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ABSTRACT: 

 In the last decade, DNA nanostructures have made the leap from small assemblies of a handful 

of oligonucleotides to megadalton objects assembled from hundreds or thousands of component 

DNA strands. Most DNA designs today are either lattice based with simple and reliable design 

tools or lattice free with a larger shape space but more challenging design and lower rigidity. In 

parallel with the development of DNA nanostructures, software packages for the simulation of 

nucleic acids have seen rapid development allowing for the simulation of the dynamics of full 

DNA nanostructure assemblies. Here, we implement an unsupervised software based on the 
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coarse-grained molecular dynamics package oxDNA to simulate DNA origami structures and 

evaluate their rigidity. From this, the software autonomously produces mutant structures by 

adding or removing base pairs or modifying the positions of internal supports. These mutant 

structures are iteratively generated and evaluated by simulation to create an in-silico evolution 

towards more rigid DNA nanostructures. 
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Constructing nanoscale assemblies from nucleic acids was first proposed in the early 1980’s1 and 

in the following two decades several theoretical, and experimental demonstrations showed that 

the concept was feasible. These early demonstrations typically used a handful of synthetic 

oligonucleotides to construct discrete2,3 or polymeric4 2D and 3D structures. The field of DNA 

nanotechnology was revolutionized in 2006 by the introduction of DNA origami5. In DNA 

origami a long strand called scaffold strand is folded by hybridizing with many shorter synthetic 

oligonucleotides called staple strands. By using scaffold strands close to 10 000 bases long and 

hundreds of staple strands, discrete megadalton assemblies with sizes in the order of 100 nm can 

be assembled with close to perfect yield.  

 

The geometry of DNA is a fundamental factor in the design of DNA nanostructures, most 

notably its helical twist, making a full turn in roughly 10.5 base-pairs.6 Most 3D DNA origami 

design consists of parallel DNA strands packed in a square7 or honeycomb8 lattice. The 

structures are held together by four-arm junctions formed by crossovers of the scaffold or staples 
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strands between adjacent helices. The positioning of these crossovers should follow the twist of 

the DNA in the connected helices to minimize strain in the structure, and this essentially creates 

simple design rules for DNA structures based on parallel packed helices. The first DNA origami 

structures were designed by hand or with limited computer assistance. This was quickly 

overcome by the introduction of dedicated design software, most notably caDNAno,9 where the 

design rules form an integral part allowing for the quick design of lattice-based DNA origami 

structures. DNA origami structures based on parallel packing have been successfully assembled 

in diverse shapes, and the addition of functional groups have yielded structures with promising 

applications in drug delivery,10,11 nano-fabrication,12,13 plasmonics14 and as tools for biophysical 

and life-science studies.15–17 

 

We recently introduced a method for automatically generating wireframe DNA origami designs 

from polyhedral meshes.18 Other tools have been demonstrated for the production of lattice free 

DNA origami structures,19,20 including with edges composed of two21 or more22  DNA double 

helices.  

 

Wireframe designs are routinely used in macroscopic engineering as it offers superior strength to 

weight ratio compared with solid beams. One of the goals of wireframe design of DNA 

nanostructures is to harness this effect on the nanoscale. Although wireframe DNA origami can 

fold with high yield to its designed shape, it is evident from experiments that their rigidity is 

below that of designs relying on the parallel packing of DNA.23  
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During the last decades, molecular dynamics simulations have evolved as a powerful tool for 

studying molecular systems.24 In all-atom molecular dynamics, every atom of the system of 

interest is simulated as separate particles including solvent molecules. As the number of 

simulated atoms increases so does the computational cost, limiting this approach to small 

systems for short simulated time. This approach has been demonstrated on DNA origami 

structures with simulated times on the order of hundreds of nanoseconds, requiring 

supercomputers.25  

 

In parallel with the computationally heavy all-atom molecular dynamics simulations, alternative 

models have been developed where the systems are simplified to reduce computational 

complexity. One of the most widely used systems for simulating DNA origami structures is 

CanDo where DNA is modeled as deformable cylinders in a finite element solver.26,27 The 

simulations are performed rapidly through a web interface, but the model lacks a description of 

electrostatics and DNA base pairing.  Another popular tool is coarse-grained molecular 

dynamics, here the studied biomolecules are represented by few-body models with simplified 

interactions, and the solvent is only modeled implicitly, one such approach is the oxDNA model. 

In the oxDNA system, every DNA base is modeled as two bodies, representing the backbone and 

a base.28,29 These bodies can interact through base pairing, stacking and electrostatic interactions. 

This simplification dramatically reduces computational cost, and it is now possible to simulate 

large DNA origami systems for up to 1 µs per day on a single GPU,30 and the model can 

reproduce the geometry of DNA origami with high precision.31  
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With the increase of computational power over the last decades it has become possible to predict 

the properties of designs made from diverse materials through simulation. This has revealed that 

human intuition cannot always predict the properties of a design, and as a result may be 

incapable of predicting designs with optimal performance. From this realization, the concept of 

shape optimization has emerged where desired properties and constraints for a design is specified 

by a user together with initial designs. The design is then evaluated by simulation and compared 

to its specifications after which it is automatically modified; this cycle is repeated iteratively to 

find designs that perform better according to the specifications. This approach has been applied 

from the microscopic scale to produce photonic cavities,32 to the macroscopic scale for the 

optimization of the internal structures of airliner wings.33  

 

In the field of rational protein design, significant computational resources are now routinely used 

to algorithmically develop proteins with novel structures and properties.34 In DNA 

nanotechnology, simulations are regularly used to evaluate individual designs, but autonomous 

evaluation and algorithmic improvement of DNA structures have not yet been demonstrated.35 In 

this paper, we use the oxDNA package to estimate the flexibility of wireframe DNA origami 

structures. We then modify our DNA origami design pipeline to allow for automatic 

modification of the DNA nanostructure design, we combine these two to create a system for 

iteratively generating mutant DNA nanostructures that we evaluate by oxDNA simulations. The 

system automatically retains structural modifications that yield lower flexibility leading to an in-

silico evolution of structural rigidity.  

RESULTS AND DISCUSSION  
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Even when using GPU acceleration, the computational time of oxDNA simulations is 

considerable and grows with the number of nucleotides. We started by optimizing a relatively 

small structure with 60 helices and around 2200 base-pairs. Simulating this structure on a 

modern GPU (Nvidia GTX 1080) for 108 time steps (corresponding to approximately 1.5 µs) 

takes about 20 hours. We can control the size of the explored search space by altering the 

number of iterations in combination with the number of mutant structures we simulate in each 

iteration. It is most practical to run one simulation per GPU, and we implement our simulations 

on two compute nodes with four GPU’s each meaning that we typically use eight mutant 

structures in each iteration. We created a server software that we run on the compute nodes that 

configures and runs the oxDNA simulations as well as performs pre-processing on the output 

data. In addition to this we use a master node that runs a modified version of vHelix18 that is 

capable of generating mutant structures, converting these to the oxDNA simulation format, and 

sending them over network to the compute nodes. When the compute nodes finish their 

simulations, they return the pre-processed data to the master node over network and the master 

node software evaluates the simulations and uses this information to generate the next generation 

of mutant structures. This software is capable of running completely autonomously and send a 

progress log over email after each finished iteration. 

 

The primary metric of flexibility used in this study is the time-series of the end-to-end distances 

of the helices that compose the wireframe DNA origami structure. In an ideal wireframe DNA 

structure, the helices representing the edges should be rigid and thus have small fluctuations in 

end to end distances during the simulation. These time-series can be extracted from simulation 

trajectories and be tracked in a plot, or the standard deviation of the time-series can be used as a 
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single metric for the performance of a helix. Supplementary figure 1 shows the extracted end-to-

end distances of each helix of a small wireframe DNA origami structure. The dynamic behavior 

of two adjacent helices can be drastically different, many helices behave rigidly with lengths 

close to the design, while some are on average considerably shorter than designed and show 

large standard deviations in their end-to-end distance fluctuations. Deformations of the structure 

can also be caused by the junctions transitioning between stacked and unstacked conformations 

during the simulation.  It should be noted that helices could take stable bent states in the 

simulations, and this would yield a lower average length but a low standard deviation.  

 

The standard deviation in end-to-end distance can be used to rank the helices of a structure from 

most to least rigid. The least rigid helices should be the most significant contributors to the 

flexibility of a structure. In our first approach (Figure 1) to increase rigidity, we individually 

modify the four least rigid helices by adding or removing base-pairs to create eight mutant 

structures. Adding or removing a base-pair from a helix will have two effects: It will increase or 

decrease the length of the helix causing an additional push or pull on the two vertices that the 

helix connects to. Secondly, due to the helical twist of DNA, it will alter the preferred angle 

between the ends of the helix, leading to increased or decreased strain in the connected vertices. 

These effects can change the behaviour of the helix (Supplementary figure 2), and could 

conceivably propagate through the structure and have non-local effects on rigidity.  

We then simulate these structures and use the average standard deviation of all helices of the 

structures as a metric of rigidity. If this metric is reduced, we conclude that the modification was 

positive and include it in the structure.  
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We use two iteration schemes to select how to proceed. In the simplest scheme called “constant 

progression” the mutant structure with the lowest average standard deviation was used as a 

template structure for the next iteration. This is done regardless of the modification makes the 

structure more rigid than the previous iteration. If the modified helix is again one of the least 

rigid edges of the structure, it will be again modified in the next generation of mutant structures, 

and the modification may revert. The second iteration scheme is called “selective progression”, 

here the best mutant structure is compared with the previous best structure score. The 

modification made in the mutant structure is only retained if it generates a lower overall score. If 

the new structure score is not better than the previous best, the mutation will be discarded and the 

software will try to modify the second to worst set of helixes of the best structure. One crucial 

difference between the iteration schemes is that the “selective progression” scheme may run out 

of edges to modify in the best structure and thus terminate, in what may be a local minimum. The 

“constant progression” scheme will continue modifying the helices of the structure indefinitely. 

 

After running the two iterations schemes on the small barrel-shaped DNA origami structure for 

31 and 25 Iterations respectively, we could see a gradual decrease in mean standard deviation 

(Figure 1c-d). The “constant progression” scheme showed a decreasing trend throughout, but the 

lowest value of the simulation constant was found already at iteration 17. The “selective 

progression” scheme did not show the same type of trend but rapidly found modifications 

leading to a lower average standard deviation. To test the effect of simulation time we evolved a 

smaller structure with five times longer simulations, using the “constant progression” scheme 

(Supplementary figure 3). For this small structure, the iterative evolution initially showed a 
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positive trend, but then appeared to get caught in a minima where the same edges were 

consistently mutated.   

 

An iterative scheme that makes only one modification per simulated structure is intrinsically 

slow, and the effect of single base pair modifications on a full structure could be minimal for 

larger origami structures. To overcome this, we implement a multiplexed modification scheme 

where several modifications are introduced in the same mutant structure at random (Figure 2) but 

with a constraint that they are spatially separated. After simulation, the modifications are 

evaluated individually by scoring the modified edge and the edges that share a vertex with it and 

comparing these with the score for the same edges on a reference simulation without this 

mutation. All positive modifications that yield an improvement larger than a threshold is then 

incorporated in the structure used in the next iteration. We tested this iterations scheme with a 

full-size DNA origami structure (around 8 000 base-pairs) with up to 10 modifications in each 

structure for a total of up to 70 modifications in each iteration. For the large structure, the initial 

iterations showed a decreasing trend in the flexibility, but after six iterations a single 

modification was incorporated that increased the flexibility. These mutations led to very modest 

effects on the rigidity of the structure, and it is possible that scoring the effect only locally 

around the mutation is inadequate as mutations may have long-range effects on the structures. 

In our evaluation of the multiplexed strategy, we performed over 500 independent simulations of 

variants of a hexagonal rod and implemented and evaluated over 4 000 mutations. These 

mutations were introduced at random, and in the tested structure, only a fraction (389) were 

beneficial. This fraction could be increased if it was possible to predict what edges could benefit 

from a mutation.  
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We took a machine learning approach and used this data to train a convolutional neural network 

on predicting if an edge could benefit from a mutation (Supplementary figure 5). After training 

the network we simulated a spherical wireframe structure and evaluated the simulation data of 

the individual edges with the neural network, yielding a prediction of what edges where most 

likely to benefit from adding or removing a base pair. We modified the 10, 20 or 30 edges that 

where most strongly predicted to benefit from modification, compared to 10, 20 or 30 random 

modification. Interestingly, when we evaluated the local effect of these mutations, we found that 

the neural network was better at predicting edges that benefited from modifications compared to 

random modifications, but the overall score of the structure did not improve by these 

modifications, again indicating that modifications can have long range effects, and that local 

evaluation may not be adequate. Machine learning approaches are used in many other design 

problems, including protein structure prediction,36 and could be implemented in multiple ways in 

DNA nanostructure design. Additional simulations would also yield a larger training data set, 

potentially improving the accuracy of a machine learning model.  

 

Addition or removal of individual base pairs represent modest modifications and appears to give 

modest improvements to structure performance, but iterative strategies can also be based on 

more significant modifications of the designs. We created a scheme where a hollow DNA 

structure is internally supported by edges connecting two helices of the original mesh. This was 

achieved by designing staple-staple protrusions that connect internally by hybridization. In each 

iteration, eight separate mutant structures are generated by disconnecting one end of one internal 

support and reconnecting it randomly to another helix (within a maximum permitted distance). 
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These mutant structures are simulated, evaluated, and a top performing structure is selected as 

template for the next iterations of mutations. This allows internal supports to “walk” inside the 

structure and find positions in the structure where they contribute the most to the performance of 

the structure. We tested this concept by designing a prismatic wireframe rod with a square cross-

section and 13 subunits, initially designed to have one internal support running through each 

subunit. The global performance of this structure was evaluated by tracking the distance between 

the top and bottom subunits of the structure, in a rigid rod, this distance should be constant. We 

implemented two algorithms: gradient descent, where in each iteration the mutant structure with 

the best performance is chosen, and simulated annealing, where a decreasing probability of 

choosing suboptimal mutant structures in each iteration should lower the risk of getting caught in 

local minima. The optimization using gradient descent showed a rapid reduction in end-to-end 

fluctuations of the structure in the first ten iterations and then appeared to level off with a 

decrease of fluctuations of almost 50 %. The simulated annealing showed a slower decrease in 

fluctuations and was also able to reach a state of almost 50% less fluctuation after 23 iterations. 

After optimization with simulated annealing, the position and orientations of the internal edges 

have gone from an ordered pattern to a seemingly random configuration (Figure 3c). A plot of 

the end to end distance of the rod (Fig 3d) shows that the fluctuations are smaller in the 

optimized structure compared to the initial state. We attempted to validate these results by 

assembling the initial and optimized structures experimentally. The initial structure assembled, 

but did not appear rod-like in electron microscopy, while the optimized structures did appear 

rod-like (supplementary figure 6).  
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Wireframe DNA origami structures may be of use in biomedical applications but are less rigid 

than structures based on the parallel packing of helices. Here we demonstrate a method to 

evaluate the rigidity of wireframe DNA nanostructure in silico using coarse-grained molecular 

dynamics simulations. We use this to create an iterative evolution of the nanostructures where 

mutant structures are generated by the addition or removal of base pairs from selected helices, or 

by moving the position of internal supports. These mutant structures are simulated in oxDNA, 

and the effect of their modification is evaluated on the entire structure or in the region around the 

modification. Modifications that are beneficial to the rigidity of the structure are incorporated in 

the next generation that serves as the base for new mutant structures. We tested this on DNA 

origami structures of varying sizes and saw moderate improvements with single base 

modification and improvements on the order of 50 % for modification of internal supports. We 

also used the large dataset generated from these simulations to train a neural network to predict 

what edges could benefit from insertions or deletion. This neural network was capable of 

identifying mutations that where locally, but not globally beneficial to the structure. 

 

The iterative evolution of structures by simulations is not limited to the simple scoring metric 

used here but could be modified depending on the desired application of the structure. If a 

moving part is being designed, the dynamics of the structure can be used as metric, if a high 

degree of similarity to the initial design is needed, the root-mean-square deviation (RMSD) 

between the simulated structure and the initial model could be used as a metric. The long 

simulation time on current hardware makes this refinement slow, but we believe that this 

approach still has merit as the modularity of DNA origami means that a single well optimized 

design can find many applications through addition of different functional groups. Additionally, 



 

13

the computing power of GPU’s is increasing with every hardware generation, meaning that what 

we do on clusters today may be done on a laptop in the future. 

 

 

Figure 1. Overview of the iterative evolution through simulation. a. A wireframe DNA origami 

is used as template for the first iteration, the structure is modified by introducing or removing 

base pairs from individual edges, creating a new generation of mutant structures that are all 

simulated. The simulated structure with the highest performance is selected as the template for 

the next generation of mutations. b. A barrel-like wireframe origami was used as the starting 

point, and optimized with “constant progression” (c.), and “selective progression” (d.) Here the 

score is the average standard deviation of the fluctuation in all helices of the best structure in the 

iteration compared to the initial structure, for the selective progression the best structure will not 

be retained if it does not perform better than the previous best.  
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Figure 2. Multiplexed iterative evolution of DNA nanostructures. a. The original structure is 

simulated together with mutant structures with several random modifications (magenta edges). 

The modifications are evaluated individually by scoring the change in the length fluctuations of 

the modified edge and its neighbors (green) and comparing this with the same edges on the 
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reference. All modifications that improve the edge more than a threshold is then incorporated in 

the next iteration (blue edges). b. A full-size DNA origami rod was used as a template with up to 

70 modifications per iteration. C) The progression of the fluctuations in the structure compare to 

the initial structure over 26 iterations. Here the score is the average standard deviation of the 

fluctuation in all edges of the structure compared to the initial structure. Additional analysis in 

supplementary figure 4.  
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Figure 3. Iterative refinement of DNA origami structures through placement of internal supports. 

a. A structure is designed with internal supports, mutant structures are then generating by 
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reconnecting one end of an internal support. These mutant structures are then individually 

simulated and scored and mutations are incorporated to the next generation either through 

gradient descent or simulated annealing. b. The performance of a rod structure is evaluated by 

the amount of fluctuation in the overall end-to-end distance. c.) Renderings of a 13-unit rod 

before (top) and after (bottom) 23 iterations of simulate annealing-based refinement, internal 

supports are highlighted in red. d. End-to-end fluctuations of the rod structure in a simulation, 

before and after refinement.    

METHODS 

DNA nanostructure design.  

Wireframe meshes was designed in Autodesk Maya, exported in the STL format and then 

converted to the PLY format using the software Meshlab. The software package BSCOR 

(available from www.vhelix.net) was used to automatically find a scaffold route through the 

mesh and then construct a DNA nanostructure geometry based on the mesh. The resulting DNA 

geometry is output to a file in the RPOLY file format that describes the length, position, 

orientation and connectivity of the DNA helices.  

Iterative simulation and evaluation of DNA origami structures in oxDNA. 

A software package consisting of three components, capable of running without supervision was 

designed. A standard workstation running Windows was used as a master node. On it, a main 

script running inside the python interpreter of Autodesk Maya copied and modified the RPOLY 

file to include the desired modifications to helices of the structure. The script then sequentially 

imported the modified DNA nanostructure to vHelix, assigned a scaffold sequence and saved the 

structure to the MA file format. The script then executed a converter to the oxDNA input format 

(TOP and CONF), this converter had been modified to also extract the ID of a nucleotide on the 
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second to first and second to last base pair of each helix and save these to a file. This script was 

set up to generate 8 mutant structures for each iteration. In parallel with this script, a server script 

was running in a separate python interpreter on the master node, when it detected that all mutant 

structures had been generated and converted it sent the simulation files over network to the 

compute nodes, after sending these files, the server script sent an email to a determined address 

with a logfile of the modifications and the progress of iterative evolution and then waited for the 

compute nodes to perform the simulations.  

The compute nodes were based on dell T630 servers with double Intel Xeon e5-2620 v4 CPUs, 

64 GB of RAM and four consumer GPUs (Nvidia GeForce 1080 or 1080Ti) and ran Ubuntu 

Linux. On the compute nodes, a server script waited for the simulation files to be sent over 

network and then started running one oxDNA simulation per GPU for 108 simulation time steps. 

After the simulations finished, the server script extracted the coordinates of the nucleotide ID’s 

as specified for the end of the helices from the simulation trajectory frames and saved these to a 

reduced size simulation trajectory. This reduced size trajectory was sent back over network to the 

master node server script.  

When the data from all simulations had been sent to the master node it would trigger the main 

script to begin evaluating the results of the simulations by calculating the end to end distance of 

each helix through the simulation from the reduced size trajectory. The standard deviation of 

these datapoints was used to estimate the flexibility of each helix, and the average standard 

deviation of all helices was used to estimate the flexibility of the entire structures.  The script 

then used this information to determine what mutant structure to proceed with and what helices 

to modify in it. 
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Simulations were run in molecular dynamics mode on oxDNA version 2.2.2 (new-relax branch) 

with CUDA acceleration, mixed back-end precision and the oxDNA2 interaction type. 

Simulation parameters were temperature: 30 C, salt concentration: 0.15 M or 0.5 M, and an 

Anderson-like thermostat. Simulation frames were saved every 20 000 timesteps to the trajectory 

file.  
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