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We describe a method whereby microscale spatial information
such as the relative positions of biomolecules on a surface can
be transferred to a sequence-based format and reconstructed
into images without conventional optics. Barcoded DNA “poly-
merase colony” (polony) amplification techniques enable one
to distinguish specific locations of a surface by their sequence.
Image formation is based on pairwise fusion of uniquely tagged
and spatially adjacent polonies. The network of polonies con-
nected by shared borders forms a graph whose topology can be
reconstructed from pairs of barcodes fused during a polony cross-
linking phase, the sequences of which are determined by recovery
from the surface and next-generation (next-gen) sequencing. We
developed a mathematical and computational framework for this
principle called polony adjacency reconstruction for spatial infer-
ence and topology and show that Euclidean spatial data may be
stored and transmitted in the form of graph topology. Images
are formed by transferring molecular information from a surface
of interest, which we demonstrated in silico by reconstructing
images formed from stochastic transfer of hypothetical molecu-
lar markers. The theory developed here could serve as a basis
for an automated, multiplexable, and potentially superresolution
imaging method based purely on molecular information.

next-gen sequencing | DNA microscopy | polonies | DNA computing |
graph theory

M icroscopic imaging has traditionally relied on optics to
amplify signals derived from initially confined spatial

regions. Exceptions include atomic force microscopy which
images by using a probe to interact with the sample. DNA has
a high information density, with storage levels of 5.5 petabits per
cubic millimeter achieved (1), making it an attractive medium
for encoding spatial information at microscales. In this paper, we
present a theoretical foundation for a spatial information encod-
ing approach that utilizes DNA sequencing and graph theory that
could be used to generate whole images.

DNA-driven reactions can be coupled to optically acquired
spatial information such as with proximity ligation assay (PLA)
(2) and DNA-PAINT (3), where molecular interactions medi-
ated by DNA are discovered using fluorescence. There is also
a family of techniques for connecting spatial locations with
single-cell RNA sequencing data: using a priori knowledge of
spatial marker genes to associate unknown genes to approxi-
mate locations, the a priori data being in most cases obtained by
microscopy such as with in situ hybridization or modeling of spa-
tial expression patterns to retrieve locations of associated genes
(4–9). Alternatively, direct microscopy-based in situ sequenc-
ing methods achieve precise context-sensitive spatial transcrip-
tomic information without needing to scramble spatial data by
dissociation prior to sequencing (10, 11).

Encoding spatial information in a way that is preserved in
the scrambling during isolation and recovery from in situ con-
texts that can then be read and recovered with sequencing is
a major challenge. A few techniques achieve this by encoding
spatial information directly into a molecular format, e.g., in the

form of DNA read during sequencing along with transcriptomic
data. These methods are based on artificial generation of an
addressable surface using printing or lithography (12–14).

Herein, we describe a computational framework for a method
called polymerase colony (polony) adjacency reconstruction for
spatial inference and topology (PARSIFT), for the purpose
of encoding images, for example of the positions of specific
molecules relative to others on a 2D plane, directly into a DNA-
based format without transduction of information through any
other medium without a priori surface addressing. PARSIFT
utilizes the connectivity of vertices in a graph of paired
DNA sequences to infer Euclidean spatial adjacency and next-
generation (next-gen) sequencing to recover that information a
posteriori.

Encoding of topological data in DNA sequence format is pos-
sible by using DNA barcodes (unique molecular identifiers), i.e.,
randomized stretches of bases within a sequence of synthetic
DNA. Barcodes associated with spatial patches can establish
an identity for those locations, each patch distinguishable from
another by sequence. A DNA barcode with 10 bases has over
1 million possible sequences, and larger barcodes can be used
to create effectively unique labels in a system. The basic unit
of topological data is an edge or association between 2 adjacent
patches by physically linking between their barcodes. Topological
mapping with barcoding has been used to infer neural connec-
tomes by building a network from cells sharing common barcodes
left by cell-traversing viruses (15) as well as features of DNA
origami (16).
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We can barcode surface patches using polony generation
methods like bridge amplification (17), a 2-primer rolling-circle
amplification (18), template walking amplification (19), or pack-
ing of barcoded beads (20). Unique “seed” strands are captured
by primer strands on the surface (Fig. 1A) and locally ampli-
fied in the immediate vicinity where they landed. This generates
numerous distinct patches, or “polonies,” of amplified DNA
(Fig. 1B). Within each, all DNA is derived from a single seed
molecule. Any of the above techniques could be applied to our
method, although we focus herein on the polony-amplification by
surface-primers approach.

By growing polonies on a surface of primers to saturation
(Fig. 1C), i.e., when growing polonies encounter the bound-
aries of other adjacent polonies, a tessellation of neighboring
polonies forms. Each polony has a limited number of immedi-
ately adjacent neighboring polonies with their own respective
barcodes. Although each patch is associated with a unique
sequence according to its parent seed molecule, isolation of this
DNA and subsequent sequencing would scramble information
about the polony’s position and its neighboring polonies. Thus
the critical step is to cross-link strands (SI Appendix, Fig. S1)
from each polony to strands from adjacent polonies (Fig. 1D)
in a way that enables both barcodes to be sequenced together
in a single read. Recovery of the strands, i.e., stripping them
from the surface followed by next-gen sequencing (by any means
including nonoptical approaches such as Oxford Nanopore), thus
preserves topological association between neighboring polonies
as pairs of barcodes—a complete set of which constitutes the
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Fig. 1. Encoding and recovering metrics through polony adjacency. (A)
Seed molecules with unique barcode sequences land randomly on a surface
of primers. (B) Local amplification of seed molecules produces sequence-
distinct polonies. (C) Saturation of polonies occurs when polonies are
blocked from further growth by encountering adjacent polonies, forming
a tessellated surface. (D) Random cross-linking of adjacent strands leads to
pairwise association of nearby barcodes. (E) Recovery and sequencing of bar-
code pairs enable reconstruction of a network with similar relative positions
of polonies to those on the original surface.

whole topological network of adjacent polonies (Fig. 1E). For
random seed distributions we show that topological information
alone, constrained by being a 2D planar network with known
boundary geometry, retains significant spatial metrics of the orig-
inal distribution. By generating such a mappable surface, we
propose that localization of molecules bound to the surface can
be done by covalent association with polonies, enabling inference
of molecular spatial distributions and construction of images with
polonies as pixels.

Results and Discussion
Voronoi Tessellation as a Model of Polony Saturation. The spatial
distribution of polonies on a surface, the a priori Euclidean infor-
mation that is not explicitly accessible after isolation, can be
preserved by associations between adjacent polony sequences
and recovered with sequencing. Information that is available
after sequencing and subsequent transformations of the data is
then referred to as a posteriori.

Assume that seed molecule amplification on a bounded 2D
surface, say in the shape of a disk, takes the form of a uniform
circular growth. At the point of saturation, polonies have ampli-
fied to the extent that their expanding boundaries are restricted
from further growth, having encountered neighboring polonies.
The system of polonies then forms a planar Voronoi tessellation
T (SI Appendix, section A), appearing as a characteristic mosaic
of polygons with the property that every point within a given cell
is closer to its parent seed point than to any others. T can also
be represented by its plane dual Delaunay diagram D =(P ,L)
whose vertices P are the seed points of T and edges L are the line
segments connecting the seed points of adjacent cells (polonies).
By the geometric characteristics of T , all of the faces of D are
triangles (ref. 22, section 9).

We refer to the graph defined purely by its vertices and edges
without spatial considerations as the untethered graph. Fig. 2A
presents a miniature Voronoi tessellation T formed from 9
seed points within a square and its Delaunay diagram D . The
untethered graph G =(V ,E) (Fig. 2D) is obtained from D
by omitting all geometric information, retaining only topologi-
cal characteristics of the Delaunay diagram D . This includes a
topological distance function t(i , j ) defined as the smallest num-
ber of edges that must be traversed to get from 1 vertex i to
another j , but no other information about the spatial origins
of G is explicitly stored (e.g., no Euclidean coordinates of the
original points).

Topological Metrics as a Proxy for Euclidean Metrics. Let P =
{pk | k =1, . . . ,N } be a planar placement of N seed points,
resulting from a Poisson-distributed seeding with intensity (i.e.,
polony density) λ over an area A. Thus N ≈λA, and an unteth-
ered graph representation G =(V ,E) of the true Delaunay
diagram D can be obtained by

V = {1, . . . ,N },
E = {{i , j} | barcodes wi and wj co-occur, i , j =1, . . . ,N }.

Since sufficiently long barcodes are with high probability unique
(SI Appendix, section B), we treat pairs of barcodes as unique
markers of polony adjacency. We postulate that with a suffi-
ciently dense Poisson-distributed placement P , the topological
metric on G (with an appropriate linear scaling) approximates
well the actual Euclidean metric of the points in P (SI Appendix,
sections D and E). Fig. 2B shows the Euclidean distance distribu-
tions for increasing topological distances from a reference vertex,
for a large collection of Delaunay triangulations of Poisson ran-
dom point sets. Fig. 2C then plots the scaled (ref. 21, equation
9.9) average Euclidean distances as a function of topologi-
cal distances for Delaunay triangulations of random point sets
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Fig. 2. Encoding and recovering metrics via topology. (A) Nine seed
molecule points distributed randomly on a plane, the induced Voronoi
tessellation T (gray lines), its Delaunay diagram D (blue lines), and the
untethered graph G. (B) The distribution of Euclidean distances associated
with a given topological distance (path with the fewest edges between
2 points) sampled for random Poisson Delaunay triangulations (5,000 sam-
ples per topological distance value). (C) Euclidean distances normalized to
the average length of a typical Poisson Delaunay edge (ref. 21, equation 9.9)
plotted vs. topological distance for different Poisson intensities, exhibiting
linearity between topological and Euclidean distance. (D) The untethered
graph: a set of nodes (black) and edges (red) that constitutes the infor-
mation preserved after dissociation from spatial context. (E) Reconstructed
planar embedding of the initially untethered graph (red lines) using the
Tutte embedding approach and corresponding Voronoi tessellation (gray
lines). (F) Alignment of reconstructed embedding from E with the original
Delaunay diagram from A.

generated by Poisson processes of increasing intensity λ, showing
crucially that the 2 variables are proportional.

On this basis we propose that by finding a proper straight-line
planar embedding of the untethered graph G we approximate
also the metric properties of the underlying Delaunay diagram
D and the corresponding Voronoi tessellation T . A straight-line
embedding of G in a plane is determined by the placement P ′

of its vertices, from which the line segments L′ corresponding
to the edges can be deduced and thus denoted as 〈G,P ′〉. Our
hidden a priori embedding is the Delaunay diagram D = 〈G,P〉,
and the goal is to approximate this with a good a posteriori
embedding 〈G,P ′〉.

One constraint on our candidate 〈G,P ′〉 is that it must be
planar; i.e., no 2 edges may cross each other. This is due to
the physical assumption that the barcode pairings correspond
to polony adjacencies and thus cannot bridge nonneighboring
polonies. There are several efficient algorithms for finding a
plane embedding of a planar graph, 1 of which is the Tutte or

barycentric embedding (23), applicable to Delaunay diagram-
type graphs. Another quality constraint is that an average spatial
density of the a posteriori vertex positions λ′ should be obtained
from the final distribution with no systematic variation across
the reconstructed area. Finally, if we were to generate a new
Delaunay triangulation from the reconstructed points (as can be
done from any arbitrary set of points), this should produce a sim-
ilar set of edges to that in the original untethered graph that was
the basis for reconstruction.

Our reconstruction approach (flow diagram in SI Appendix,
Fig. S2) starts by determining the outer or boundary face of
the Delaunay diagram D underlying the untethered graph G .
This can practically be done by finding, with an intermediate
planar embedding, the plane face of G that has the most ver-
tices. Fixing the placement of the vertices on the boundary
face, we then compute positions for the other vertices of G
by Tutte’s algorithm, which simply places each vertex at the
average (barycenter) of its neighbors’ positions. In the case
of a Delaunay diagram-type graph with the boundary face a
convex polygon, this system is guaranteed to be nondegener-
ate (23), and the result will be a crossing-free straight-line
embedding of G .

If spatial characteristics of the original Euclidean boundary
are known—for instance if we specify that all boundary points
must lie on a circle of known radius—then the embedding
may also be scaled to match the original Euclidean metrics.
Fig. 2E shows the Tutte embedding of the untethered graph
(Fig. 2D) with boundary points arranged uniformly around the
unit disk. For comparison, we have aligned the reconstructed
graph with the original Delaunay diagram (Fig. 2F) by lin-
early transforming the planar graph to minimize the distance
between corresponding vertices. We can see that relative posi-
tions are preserved albeit with local distortion that leads to
slight displacement of each reconstructed vertex relative to its
original seed counterpart. The algorithm thus returns approx-
imate relative spatial positions of polonies from an input of
paired polonies.

Simulation and Reconstruction by Embedding. We simulate the
primer lawn as a hexagonally packed disk of area A with M
primer sites as the region of interest (ROI) (Fig. 3A). We
simulate a random seeding at a polony density λ by selecting
N =λA random sites, followed by pairing of adjacent polony
primer sites and scrambling of edge data prior to reconstruc-
tion. Fig. 3B shows how cross-linking leads to random pairing
of adjacent sites, some of which are self-pairing events (provid-
ing no additional pairing information) and some of which are
cross-polony sites that can be used to deduce the presence of a
spatial boundary, with the fraction of information-bearing cross-
pairs diminishing with the relative site density ρ=M /(λA), or
average number of sites per polony (SI Appendix, Fig. S3). The
probabilistic nature of the pairing opens up the possibility to
miss an existing boundary, particularly when the boundary is
small or when ρ is low. A 2,000-polony simulated surface is
shown in Fig. 3D, and SI Appendix, Fig. S4 shows site linking
and the corresponding Delaunay triangulation of a 500-polony
example.

We reconstructed the topological network from the scrambled
edges and performed intermediate embedding, boundary face
determination, and Tutte embedding (Fig. 3C). For this larger
reconstruction, spatial uniformity is more apparent, and we see
that Voronoi cells take on the approximate size of polonies in
the a priori surface, observe no obvious systematic changes in
mesh density across the length of the ROI, and note the absence
of crossed edges. Besides the Tutte embedding strategy, we
developed 2 additional approaches for approximating Euclidean
metrics from the untethered graph. One is a nondeterministic
spring relaxation (24). This approach does not strictly require a
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Fig. 3. Simulation of polony adjacency reconstruction. (A) Lattice diagram
of primer lawn and polonies denoted with color and Voronoi cell bound-
aries. Solid circles indicate seed locations. (B) Illustration of random site
pairing between adjacent primer sites. (C) Alignment between a priori and
a posteriori points from A. (D) Larger simulated surface with a polony
density λ = 2,000 polonies per unit area and a relative site density ρ =
50 sites per polony on average. (E) Reconstructed graph (red lines) and
corresponding Voronoi tessellation (gray lines) computed using the Tutte
embedding approach from scrambled edges derived from the simulated
surface in D.

crossing-free planar embedding and can thus lead to provably
false positions involving nonplanar adjacency; however, this fea-
ture could also be advantageous if natural interpenetration of
adjacent polonies leads to such topology. The last approach (SI
Appendix, section F) is based on the notion of topological dis-
tance t(i , j ) and its role as a proxy for Euclidean distance. We
extend the principle of geometric triangulation, whereby the set
of distances of a point to other points in a plane can be converted
to Cartesian coordinates, to incorporate t(i , j ) as a surrogate for
Euclidean distance. In 1 variant of this method, a total topolog-
ical distance matrix is reduced to 2 principal component vectors
approximating the x and y coordinate vectors. In the alternative
variant, t(i , j ) of each vertex are measured out only to periph-
eral vertices, reducing systematic distortions. A comparison of
reconstructed meshes from the different approaches is shown in
SI Appendix, Figs. S5 and S6.

Stamping and Image Formation. Knowledge of polony locations
could be exploited to provide spatial information about objects of
interest. We devised a basic model of image reconstruction from
the principle of contact or diffusion-based transfer of molecules
of interest to the mapped surface, i.e., a kind of molecular stamp.
As proof of concept, we use an image (Fig. 4A) as a repre-
sentation of a hypothetical probability distribution of 3 types
of molecular markers labeled with identifying sequences called
“red,” “green,” and “blue.” The image represents a surface of
interest that we would like to sample from, for example a cell sur-
face covered in oligo-tagged antibodies, each of which would be
coupled enzymatically to a given polony upon contact (Fig. 4B)
or diffusing RNA molecules like in ref. 14. The color of the image
corresponds to the density of such markers and thus the proba-
bility that a marker of a particular color is placed on the polony
surface. To simulate molecule transfer, the overlaid lattice of

primer sites denotes points where a Monte Carlo sampling will
occur in the corresponding position in the image. If the image
pixel at a given primer site location has an RGB value dominated
by red and green for example, then there is a higher probability
of that site being occupied by either a green or a red marker
(Fig. 4C). Realistically, molecular transfer introduces distor-
tion, e.g., from curvature of cell membranes or lateral diffusion
of mRNAs.

According to the reconstruction procedure, a Voronoi tessel-
lation is produced from the final set of vertex positions—each
cell of which constitutes a pixel that can be used to form an
image. The final RGB value of the cell can be determined
by tallying the markers that have associated with the primer
sites in the polony as well as the number of unassociated sites
(Fig. 4D). The Voronoi images shown in Fig. 4 E and F were
generated with the scrambling step that removes any spatial
information of the original image and reconstructed using our
algorithm. Note that global rotation and chirality are not explic-
itly preserved from the original image. To place this 30,000-pixel
image in experimentally relevant terms, we point to the work
of Rodriques et al. (20), in which circular disks of barcoded
10-µm beads (in their case sequenced optically in situ to obtain
sequence addresses) are used to capture transcriptomic data
from tissue slices. They report (20) a typical size of 70,000 10-µm
beads per 3-mm disk and obtain approximate single-cell res-
olution (SI Appendix, section H). Image reconstructions from
the 4 approximation approaches are compared in SI Appendix,
Figs. S5 and S6.

Assessment of Distortion and Precision. We may characterize
reconstruction quality by defining a distortion metric. The a
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Fig. 4. Voronoi image formation. (A) An image is overlaid on a surface
of primer sites. (B) Molecular markers representing different targets (R, G,
and B [red, green, and blue]) contact transferred to the polony surface and
each covalently linked to a polony barcode. (C) Monte Carlo sampling to
determine whether a marker is associated with a given site and if so which
target by taking the probability from the RGB value normalized to 1 at the
corresponding position in the image. (D) Tallying of markers and empty
sites within a polony/Voronoi cell determines the color and brightness of
that “pixel.” A subsequent image (D, Lower) is formed by coloring each
cell accordingly. (E) Larger-scale reconstruction from scrambled edge data
using the Tutte embedding approach with 30,000 polonies. (F) Close-up of
E revealing individual Voronoi pixels. Adapted from Da Vinci, Leonardo.
1503–1506. Mona Lisa. Oil on wood. Paris: Musée du Louvre.
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priori seed distribution points have a 1-to-1 correspondence with
points in the a posteriori reconstruction, and since we generated
the a priori points ourselves, we can directly compare corre-
sponding original and inferred positions by applying a linear
transform Tx (P) (rotation, mirroring, scaling, and translation)
to the set of reconstructed points that minimizes net displace-
ment between the 2 distributions. Distortion is thus defined as
the set of displacements Df =(Dfi , . . .DfN )

def
= d(P ,Tx (P ′)) |

min(
∑N

i=1 d(pi ,Tx (p
′
i))). Averaged over multiple runs, we

obtain 2D histograms (Fig. 5A and SI Appendix, Figs. S7 and S8)
of distortion as a function of position in the ROI. Increasing the
polony density (λ) reduces average distortion Df = 1

N

∑N
i=1 Dfi

Fig. 5. Reconstruction quality. (A) Two-dimensional histograms of average
displacement values binned by relative position in the unit disk (n = 5,000/λ
simulations per histogram) for varied parameters (λ and ρ). (B) Distortion
in a single 2,000-polony Tutte embedding with lines connecting a priori and
a posteriori vertex locations. Color map indicates line length (max = unit
disk diameter 2.0). (C) Radial profile of distortion in B and 5-point moving
average (red line). (D) Log-log plot of average displacement vs. λ (points
are single individual simulation reconstructions) and fixed ρ= 500 sites per
polony showing displacement ∼∝ 1/

√
λ. (E) Linear plot of Levenshtein dis-

tance (levG,G′ ) between untethered and a posteriori Delaunay graphs as
function of polony. (D and E: n = 25 simulations per λ value). (F and G)
Plot of average displacement (F) and plot of levG,G′ (G) each as a function of
ρ for 2 values of λ. Error bars represent SD (F and G: n = 25 simulations per
point). (H) Single instance of FWHM of a posteriori point spread function of
a single site. (I) Log-log plot of FWHM vs. λ, scaling approximately according
to the negative square root of polony density.

(Fig. 5D and SI Appendix, Fig. S10) whereas changes in the site
density ρ (Fig. 5F and SI Appendix, Fig. S11) have a negligi-
ble effect on Df except at ρ< 100 sites per polony near the
point of network disconnection from absent edges. Examining a
single simulation (Fig. 5B), we can visualize typical distortions,
persistent over limited local scales and occurring with greater
probability near the boundaries. Analysis of the radial distribu-
tion of this instance (Fig. 5C) reveals this as a mild systematic
worsening near the boundary, an artifact introduced by the algo-
rithm’s treatment of vertices on the boundary. SI Appendix,
Fig. S9 compares single-instance distortions for the different
reconstruction approaches.

We also characterize reconstruction quality with Levenshtein
distance (levG,G′), the number of edits needed to make 2 graphs
identical, between the untethered graph and set of edges derived
from a Delaunay triangulation D ′ generated from the final
reconstructed coordinates. Importantly, this metric is based only
on a posteriori information, so it can be used in an experimen-
tal context where knowledge of the underlying distribution is
unavailable. It weakly but positively correlates with distortion for
a given λ (SI Appendix, Fig. S13). levG,G′ grows linearly with λ
(Fig. 5E and SI Appendix, Fig. S10) and like distortion is rela-
tively constant as a function of ρ with a transient catastrophic
breakdown at low ρ (Fig. 5G and SI Appendix, Fig. S11). We also
measured a classical resolution, the full width at half maximum
(FWHM) of a point-spread function (Fig. 5H), by sampling the
inferred position of a single site (taking its position to be the
centroid of whatever Voronoi cell it lands in). Like distortion,
FWHM is ∼∝ 1/

√
λ (Fig. 5I), indicating that to halve the min-

imum size of distinguishable features, one should quadruple λ
(SI Appendix, Fig. S12). In experimental terms, polonies gener-
ated from techniques like template walking amplification, which
forms polonies from sites that must be near the packing limit of
oligo surface immobilization, can be on the order of nanometers
(19) (SI Appendix, section G).

Conclusion
The 3 reconstruction methods (Tutte embedding, spring relax-
ation, and topological distance matrix) succeed in producing
approximations of the original seed distributions that can be
used to generate images. Tutte embedding exhibited the best
estimated algorithmic complexity (based on run-time scaling
with λ; SI Appendix, Fig. S14), making it the fastest technique
which becomes significant for large reconstruction problems
(λ> 10, 000 polonies per unit area). Both Tutte embedding and
spring relaxation had the lowest distortion levels, with Tutte
embedding exhibiting slightly better Df and levG,G′ scaling with
λ. Tutte embedding was sensitive to catastrophic failure at low
ρ, with singly connected edges crashing the reconstruction, and
all 4 approaches were sensitive to disjoint subgraphs—making
noisy and unconnected graph data a likely challenge for experi-
mental scenarios. SI Appendix, Fig. S13 and section I discuss our
attempts to move toward an algorithm that optimally exploits the
available information, and future research should seek to estab-
lish a provably maximum-entropy reconstruction that is efficient
and deterministic.

Along these lines, using information such as the number of
self-pairing events could be useful to extract more informa-
tion and weight edges according to estimated polony size and
better control point placement. Alternatively, low-information
content self-pairing events could be prohibited through a bipar-
tite network approach whereby only pairings between A-type and
B-type polonies would be allowed (SI Appendix, Fig. S15). The
bridge amplification approach to polony generation leaves the
possibility of doing this with 2 species of independent primers
on the surface and 2 interpenetrating/overlapping and indepen-
dently saturated polony surfaces. Another possible approach is
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series growth of polonies. In the basic concept presented in
previous sections, a primer of uniform sequence is assumed;
however, generation of a saturated layer of polonies that could
then be used as primers for a subsequent polony generation
step would then result in an overlapping of every second-layer
polony with multiple first-layer polonies. This would result in
efficient pairing of barcodes without the need for subsequent
cross-linking steps.

At the time of publication, we are aware of concurrent
works whose contributions are complementary to ours on devel-
opment of DNA-sequencing–based microscopy (25, 26). The
former work experimentally demonstrates DNA microscopy
with images of mRNA in cells using locally confined cDNA
amplifications and polymerase extension-based fusion of bar-
codes to connect spatial patches. Their approach differs from
ours through the fact that fusion events are used as a direct
distance metric, whereas our data instead rely on topol-
ogy as a proxy for Euclidean metrics. The latter work uses
series proximity ligation to associate planar spatial patches
and form a network, using a spring relaxation approach for
reconstruction.

PARSIFT is a concept for microscopic image reconstruction
using spatial information encoding in DNA base format. We
showed an in silico proof of concept by constructing a pipeline for
taking decoupled edge data, generated from simulated polony
distributions, that are then reassembled into a topological net-
work and embedded in a Euclidean plane, resuming spatial
characteristics of the original seed distribution. We saw that
global distortions are low enough to resolve whole images. We
hold that this framework and pipeline for reconstruction could
be exploited for image acquisition of micro- and nanoscale sur-
faces with molecular libraries of potentially very high multiplicity
and with throughput automated in a way that would not be
possible with most optical approaches.

Supporting Information (SI Appendix )
The code is available at https://github.com/Intertangler/parsift.
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