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Due to their multiple binding domains, immunoglobulin 
molecules like the bivalent immunoglobulin G (IgG) anti-
body exhibit complex interactions with multivalent anti-

gens, that is, clusters of multiple copies of molecules or molecular 
domains occurring at separation distances of the order of 1–30 nm. 
Multivalent interactions enhance the stability of binding interac-
tions by enabling the simultaneous attachment of multiple ligands, 
increasing the magnitude of the apparent affinity or Gibbs free 
energy of multivalent binding, also called functional affinity in 
favor of the term ‘avidity’, and extending the residence times of the 
bound antibodies1–3.

Many pathogenic surfaces exhibit spatial repetition at length 
scales relevant to antibody multivalence. Viral capsid proteins 
undergo self-assembly into periodic patterns4, and some neutraliz-
ing antibodies achieve their high affinity and neutralization capa-
bility through bivalence5,6. Self-assembling crystalline arrays of 
surface-layer (S-layer) proteins—the outermost structure on many 
bacteria and archaea—are a major contact point between the patho-
gen and host7 and are implicated as the mediators of innate8 and 
adaptive immunity9,10. Their repetitive organization may be integral 
to their immunological role, as their removal from bacterial sur-
faces was seen to reduce the immune response11. Multivalence is 
also probably an important factor during the affinity maturation of 
antibodies and thus in vaccine design12–14.

Antibody interaction with patterned surfaces presents a chal-
lenge for both experimental control and mathematical modeling as 
it is a many-bodied problem occurring on the timescales of seconds 
to minutes. Such systems are too computationally expensive for full-
atom molecular simulation. Models treating antibodies and anti-
gens as abstract binding and non-binding units have been the most 
successful at capturing the relevant dynamics, and have historically 
treated multivalence as a function of ligand coating density where 
multivalence emerges statistically as the average nearest-neighbor 
distance between the ligands decreases15. More recently, coarse-
grained molecular simulations have been fruitfully used to quantify 

the effects of the cooperative binding of the antibody subunits on 
binding affinity16,17. Nevertheless, a challenge of precisely calibrating 
such models remains due to the absence of experimental tools to 
independently assess monovalent and multivalent binding dynam-
ics as well as a pipeline to connect such data to the models.

The patterned surface plasmon resonance (PSPR) technique 
enables the measurement of binding kinetics on precise, monodis-
perse patterns of ligands, achieving a robust control of geometry 
through the use of DNA origami nanostructures18 (Fig. 1a). Here 
we demonstrate a pipeline for the automated conversion of PSPR 
data into a flexible, experimentally parameterized model of anti-
body interaction with arbitrarily complex multivalent surfaces. 
The model is based on a coarse-grained simplification of bivalent 
antibody binding to antigens as a discrete Markov process with 
distinct states: empty antigen, monovalent antibody–antigen com-
plexes and bivalent antibody–antigen complexes with transitions 
between these states governed by elementary rates (Fig. 1b). From 
this basis, the dynamics of more complex patterns of multiple anti-
gens can be reduced (Fig. 1c) to combinations of these elementary 
states. A causal linkage between the pattern geometry and antibody 
dynamics could be potentially exploited as a form of spatial pro-
grammability by either immunity or pathogens during their adver-
sarial co-evolution. We investigate this possibility and the role of 
spatial tolerance, that is, the range and impact of antigen separa-
tion distances on bivalent binding kinetics (Fig. 1d), in determining 
the effective binding affinity, walking speed of antibody migration 
on patterned surfaces and direction of antibody migration. Such 
control mechanisms might inform the development of vaccines for 
greater control over the affinity maturation process.

Results
Spatial tolerance model. We developed a model parameteriza-
tion pipeline based on a progressive fitting of the transient surface 
plasmon resonance (SPR) profiles first for monovalent and then 
for bivalent binding processes to reduce the degrees of freedom at 
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each stage of fitting. In the first stage, we used either rabbit anti-
digoxygenin (DIG) IgG or mouse-derived anti-DIG IgG1-targeting 
DIG-decorated DNA origamis with a single-cycle kinetics pro-
gram where progressively higher concentrations of antibody were 
exposed to the immobilized antigen substrate (Fig. 2a,b). This pro-
gram was performed with a one-antigen configuration (Fig. 2c,e) 
to parameterize our Markov model (‘Markov model of arbitrary 
antigen pattern geometries’ section) by relating the SPR signal to 
the average occupancy Φ defined as the number of antibodies per 
structure averaged according to the prevalence of each possible 
state (‘Conversion from SPR signal RAb to bound antibody nAb’ sec-
tion). This yields the respective association and dissociation rates 
k1 = 1.93 ± 0.05 × 107 M−1 s−1 and k−1 = 5.28 ± 0.07 × 10−4 s−1 as well 
as a monovalent dissociation constant KD1 = 2.7 ± 0.11 × 10−11 M 
defined as the ratio of the dissociation to association rates. We 
parameterized the interconversion between the monovalent and 
bivalent states by fixing the previously determined monovalent 
parameters and fitting the model to experiments involving multi-
ple adjacent antigens (‘Fitting continuous-time Markov models to 
PSPR data using autocorrelation of residuals’ section). We fitted the 
model by adjusting KD2 or the interconversion constant defined by 
the ratio of the reverse and forward interconversion rates. For struc-
tures configured with two antigens separated by 14.3 ± 1.2 nm, we 
find KD2 = 8 ± 6 × 10−3 (Fig. 2d,f).

By applying progressive fitting to PSPR runs with structures pat-
terned with two adjacent antigens of varied separation distances, 

we found the internal conversion process to vary accordingly. Small 
and large separation distances correspond to reduced bivalence, 
that is, larger KD2. We constructed a phenomenological equation 
(‘Mathematical description of spatial tolerance’ section) modeling 
the interconversion constant (Fig. 2g). The model is composed of 
a logistic tension term representing the reduced bivalence at large 
separation distances and an exponential compression term repre-
senting the penalty to bivalence observed at extremely close sepa-
ration distances, a characteristic that has been substantiated by 
recent biosensing applications19. In our model, the interconversion 
constant is, thus, a function of adjacent antigen separation distance 
with the form

KD2 =
Kmax
D2

1+ e−αt(x−ℓt)
+ Kmax

D2 e−αc(x−ℓc), (1)

where ℓt and ℓc are the characteristic lengths defining the scale of 
the tensile and compressive terms, respectively; αt is the sharpness 
of the tensile penalty; αc is the decay parameter of compressive pen-
alty to bivalence; and Kmax

D2  is the value of KD2 at which the contribu-
tions of bivalence to binding dynamics are vanishingly small. We 
found that when appropriately fitted (Fig. 2h), this model predicts 
a theoretical min(KD2) located at ~10.6 nm separation distance with 
an approximately 1.0 nm uncertainty due to an expected random 
shift in the one-antigen input data (Fig. 2i), whereas the experimen-
tal datapoint with the lowest KD2 is located at ~15.0 nm. This result is 
in agreement with another study20 in which the optimal epitope sep-
aration distance is estimated using DNA origami and atomic force 
microscopy, although we note here that the curve is likely to differ 
between isotype, species and possibly even clones due to angular 
variation in the epitope–paratope bond.

Steady-state and transient analyses. To determine the dependence 
of system bivalence on solution-phase concentration, we used the 
parameterized model to obtain the steady-state probability distri-
butions for a range of solution-phase concentrations (Fig. 3a). This 
revealed concentration regimes of differing dominant states: empty, 
bivalent and saturated monovalent at low, medium and high solu-
tion-phase concentrations, respectively. The entropic maxima occur 
at transitions between these domains (Fig. 3b), and the transitions 
in bivalent and monovalent contributions to chemical potential 
occur in accordance with the transition from bivalent to saturated 
monovalent regimes (Fig. 3c; ‘Determination of thermodynamic 
properties’ section).

In addition to simulating de novo patterns’ steady-state prop-
erties, the model enables us to simulate the transient dynamics of 
hypothetical systems with arbitrary geometries and arbitrary tim-
ing in the introduction of different solution-phase concentrations. 
To validate the pipeline, we used the model parameterized with 
one- and two-antigen data (Fig. 2g) to create a blind a priori predic-
tion of the evolution of a higher-order system with three antigens 
arrayed in a 7.2 × 14.3 × 16.0 nm right triangle and then check its 
correspondence with an experimental trajectory (Fig. 3d); addi-
tional validation is shown in Supplementary Fig. 7. We found that 
the experimental trajectories closely conformed to the predictions. 
The model provides access to the individual contributions of states 
to the signal through their occupancy (Fig. 3e) and relative propor-
tions (Fig. 3f), enabling us to construct a narrative explanation for 
the observed dynamics. We see, for example, in the final stage when 
the concentration was set to zero, as the total occupancy decreased 
and occupancy contributions from monovalently bound antibodies 
decreased, bivalent-state contributions counterintuitively increased. 
This indicates that higher concentrations in the penultimate stage 
inverted the system to favor monovalent-dominated saturation 
states that subsequently transitioned into unsaturated bivalent states 
as the sites became available (Fig. 3g).
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Fig. 1 | Scheme for modeling binding dynamics of antibodies on multi-
antigen substrates. a, Illustration of patterning concept, where small-
molecule antigens (haptens) are arranged using short, flexible tethers at 
well-defined locations on DNA origami nanostructures. This enables the 
multivalent interaction of antibodies with antigen patterns. b, Markov 
model of antibody binding where only the basic binding/unbinding and 
bivalent interconversion processes are used to couple discrete monovalent 
and bivalent binding states. c, Model extension to more complex pattern 
geometries is accomplished by separating the system into elementary 
transitions between the states comprising different combinations of empty 
and monovalently or bivalently occupied antigens. d, Pairs of antigens 
separated by different lengths elicit differing antibody-binding kinetics due 
to the separation-distance-dependent impact of the antibody structure on 
the chance of bivalent interconversion.
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Experiments on repetitive antigen patterns. To explore the poten-
tial for pattern-based control and programmability of antibody 
dynamics, we modeled the dynamics of larger systems with greater 
relevance to periodic pathogenic surfaces. For larger systems, a 
complete enumeration of states scales poorly with increasing num-
bers of adjacent antigens. We developed a Markov chain Monte 
Carlo (MCMC) implementation of the model (‘MCMC version of 

the model’ section) to sample the trajectories that converge to state 
probabilities with large sample numbers. Rather than enumerating 
all the system states (that is, combinations of antibodies and bind-
ing modes on a structure and possible transitions), the system per-
forms a random walk through the large state space, computing its 
rate of escape into neighboring states at any point in time. We then 
examined the collections of individual trajectories for such systems 
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to understand their average behavior. Specifically, we examined the 
role of repetitive antigen spacing in simple one-dimensional (1D) 
arrays.

Antigens arranged according to a spacing gradient in the range 
of 10–22 nm separation distances (that is, the interval of the steepest 
slope in equation (1)) elicit asymmetric accumulation towards the 
narrow-spaced end of the array (Fig. 4a). This system also exhib-
ited individual walking trajectories that tend towards the narrow-
spaced end (Fig. 4b), asymmetric velocity (Fig. 4c) and asymmetric 
net displacement (Fig. 4d) according to the direction of the gradi-
ent. The mechanism for this locomotion is that of a biased random 
walk, where at any point in time, a bivalently bound antibody has a 
random chance to dislodge one of its paratopes and then reassociate 
either with the same epitope or an adjacent one. Differential spac-
ing between the adjacent epitopes leads to a statistical preference for 
more stable spacings with a lower interconversion ratio KD2.

Antibodies binding to 1D arrays with uniform spacing exhibited 
divergent residence times, with antibodies spending less cumula-
tive time on 22-nm-spaced arrays (Fig. 4e) than those of narrow 
10-nm-spaced arrays (Fig. 4f). The migration speeds of antibodies 
on high-strain-inducing arrays are greater than those of low-strain-
inducing arrays, and a comparison of the net displacement shows 
that antibodies moved further from their initial binding location on 
widely spaced arrays relative to the narrowly spaced ones (Fig. 4g).

Discussion
Repeating epitope patterns are present in many viruses as coat pro-
teins21–24 and in bacteria as S-layer proteins25–27, often with a high 
degree of symmetry or geometric periodicity. Such repetitive, quasi-
crystalline patterns have been recognized as a marker of foreignness 
corresponding to major enhancements of IgG response compared 
with unorganized substrates28. Investigators have observed both 
monovalent and bivalent antibody binding to such periodic viral 
surfaces24,29, and binding enhancement due to bivalence is a recog-
nized factor in determining both immune pathogen recognition 
and neutralization capability30,31. A high-speed atomic force micros-
copy study32 captured the real-time bipedal locomotion of antibod-

ies on reconstituted pathogenic surfaces with periodic patterns of 
epitopes.

The authors of this study proposed that antibody locomotion is 
enabled by the strain induced during bivalent binding as antibodies 
accommodate the geometry of their target antigens, weakening the 
bond and triggering a bipedal step. Our results agree and indicate 
that precisely tuned spacing on repetitive antigen patterns would 
have a major impact on the strength of bivalent bonds; furthermore, 
differences in adjacent antigen spacings statistically drive migra-
tion, as antibodies randomly move until becoming immobilized in 
states with minimal strain.

One limitation of our model is that torsional flexibility of the 
hinge region6 is not considered. This is due to the design of the DNA 
origami nanostructure substrates in which hapten antigens are teth-
ered by short, flexible spacers with rotational freedom. Future stud-
ies could explore rotational spatial tolerance as well as degrees of 
freedom in the Z direction by including additional terms in equa-
tion (1) calibrated with the PSPR data that systematically modulate 
relative epitope orientations or employ structures that incorporate 
pathogenic protein antigens33–36 for more realistic structural com-
plexity and physiological relevance.

An additional limitation of our model is the potential for over-
extrapolation in increasingly complex systems, with any inaccura-
cies in spatial tolerance model or parameterization quality subject 
to propagation. We predicted that long-range gradients of differ-
ential spacings could be used to establish the persistent directed 
migration of antibodies on a surface, and we propose that PSPR 
and the progressive fitting pipeline presented here should be used 
in future studies to experimentally test the predictions. First, such 
designs should be possible using DNA origami; second, the stratifi-
cation of states obtained by model fitting to convoluted binding data 
might enable one to measure the spatial distribution of antibodies 
on gradient structures.

Repetitive antigen arrays have been important in vaccine 
design37,38. The evolution of protective antibodies against malaria 
was shown to be dependent on a repetitive motif39, and bacteria are 
known to interfere with antibody binding such as Fc targeting to 

Fig. 3 | De novo simulation with parameterized kinetics. a, Stationary distributions colored by state of a two-antigen system (14 nm separation) for a range 
of solution-phase antibody concentrations, demonstrating clear regions of predominantly empty, bivalent single-antibody occupancy and monovalent 
two-antibody occupancy regimes connected by smooth transition regions. b, Distribution of state entropic contributions to free energy for a range of 
solution-phase antibody concentrations. c, Chemical potential contributions at equilibrium from each state for a range of concentrations (legend shows 
the five most abundant states). d, Result of a blind test with SPR signal in RU predicted for a trimeric 7.2 × 14.3 × 16.0 nm antigen configuration and known-
concentration intervals overlaid with the raw experimental (red) run. e, Occupancy of the predicted run stratified by state. f, Transient-state probability 
distribution for the trimeric antigen configuration. g, Transient evolution of monovalent (blue) and bivalent (red) contributions of antibodies to the average 
occupancy or number of antibodies per structure in the trimeric system. The cross between the two lines demonstrates the transition between regimes by 
changing the concentration. The legends list all or the five most prevalent states σi along with their corresponding occupancy ϕi and probabilities pi at the 
end of their respective run or contributions to entropy in the case of e.

Fig. 2 | A progressive fitting pipeline for obtaining a parameterized model from minimal experimental data. a,b, Concentration versus time plot of 
antibody solution exposed to patterned antigen substrates in a single-cycle kinetics PSPR experiment. c,d, Experimental binding kinetics data (black line) 
of one-antigen (c) and two-antigen configurations (d), superimposed over the occupancy calculated from the parameterized model. Model occupancy is 
divided and colored according to the state, with the height corresponding to the state’s contribution to the total antibody occupancy per structure. e,f, For 
the one-antigen (e) and two-antigen (f) configurations, the transient-state probabilities stratified according to the model prediction, colored and stacked 
to satisfy the normalization condition where all the probabilities add to 1. The legends list either all or the five most prevalent states σi along with their 
corresponding occupancy ϕi and probabilities pi at the end of their respective run. g, Interconversion constants (red points) plotted versus two-antigen 
configuration separation distance x and the fitted spatial tolerance model (blue line). The blue error bars indicate the model fits due to one standard error 
of the mean away from a mean input one-antigen run, propagated to KD2 values (vertical black error bars). The horizontal black error bars denote spatial 
uncertainty (defined elsewhere44). The vertical black error bars denote uncertainty due to one standard error of the mean variation in the input data. h, 
Goodness-of-fit characterization of the spatial tolerance model. The red points show an apparent random dispersion of KD2 points minus a moving average, 
whereas the blue points show the dispersion of model values subtracted from KD2 at each point. i, Sensitivity of the model’s minimum to shifted values of 
one-antigen input data by the number of standard error of mean (SEM) away from a mean input run.
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prevent opsonization40. The apparent importance of spatial organi-
zation in immunological signaling suggests a role for non-equilib-
rium spatial phenomena such as those studied here, and we might 

expect antigen organization itself to be under selective pressure dur-
ing host–pathogen co-evolution. We suggest that the mechanism of 
stochastic walking predicted here might explain some of the pres-
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sures guiding the pathogen epitope organization, and such a mecha-
nism might be exploited in the rational design of vaccines.

An inversion of this energy landscape phenomenon pertains 
to laterally mobile antigens such as the spike proteins in viral lipid 
envelopes. Mobile antigens would be expected to accommodate 
bivalent binding via lateral diffusion to achieve the minimum inter-
conversion ratio KD2. Another study derived a theoretical affinity 
optimum for mobile spike proteins that depends on their surface 
density, arguing that intermediate densities invoke the greatest 
immune response and that the low-spike-density characteristic of 
human immunodeficiency virus is the key to its immune evasion41. 
In this respect, a spatial tolerance model and experimental param-
eterization pipeline could aid vaccine development by inform-
ing design choices meant to elicit a precise immune response, for 
example, immunostimulatory virus-like particles35,42. Our pipeline 
could also be used to dissect the complex state spaces of bi-, tri- or 
tetra-specific antibodies that are recently being developed for thera-
peutic and biosensing applications43. We expect these molecules to 
exhibit complex binding behaviors, especially as many are engi-
neered with non-Fc-based tethering regions of various flexibilities  
and lengths.

The capacity for emergent dynamics and programmable behavior 
makes antibody–antigen interactions a subject of greater potential 
complexity than previously thought. Experimentally parameter-
ized modeling provides a reality-grounded sandbox for discovery, 
and we anticipate that future modeling pipelines coupled to other 
experimental technologies will bear fruit as this subject continues 
to be explored.

Methods
Statistics and reproducibility. Error assessment (Fig. 2g) was performed using 
a boostrapping method in which the mean and mean ± one standard error of 
the mean input data were used to form the central, upper and lower inputs 
propagated to obtain the individual output points shown in the figure, with the 
upper and lower vertical error bars corresponding to the outputs produced by the 
upper and lower inputs, respectively. Goodness of fit for the phenomenological 
spatial tolerance function was characterized using an adapted chi-squared 
metric (‘Mathematical description of spatial tolerance’ section). The assessment 
of model robustness and predictive potential (Fig. 3 and Supplementary Figs. 7 
and 8) was performed using a blinded test in which I.T.H. performed the model 
parameterization and prediction of experimental SPR curves for an untested 
three-antigen triangular structure for three independent replicates with different 
corresponding bound structure amounts, whereas the experimental test data 
obtained by A.S. and I.S. were withheld until the predictions were submitted  
for comparison.

Overview of computational methods. Some methods and explanations may 
be found elsewhere18. However, in the following, we emphasize the original 
developments of this work including the following: a minimal parameterization 
pipeline for Markov models sensitive to arbitrary antigen spacings and its 
experimental validation; phenomenological model with analytical equation 
describing spatial tolerance as a continuous function; application of the model 
and fitting pipeline to two different antibodies: one from rabbit and the other, 
mouse; a systematic approach to determining the conversion factor between 
the SPR response units (RUs) to that of the number of bound antibodies per 
structure; steady-state analysis and determination of thermodynamic quantities 
from equilibrium-state probability distributions; a random-walk MCMC variant 
of the model that can be used to simulate larger systems with too many connected 
antigens to be feasible for enumerative approaches.

Briefly, the pipeline is executed in three parts. The first part requires the 
empirical estimation of the maximum SPR response due to the saturation of 
antibody-binding sites, based on the measured signal due to origami structures 
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antibody location on 1D antigen gradients oriented with increasing spacing (top) and decreasing spacing (bottom). b, Random-walk trajectories of 
antibodies tracked from their initial landing locations on 1D antigen gradients with increasing (top) and decreasing (bottom) spacing gradients. c, 
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binding to the surface and a standard curve constructed to relate structure 
binding to the maximum SPR response. This information is used as a conversion 
factor to relate the SPR signal for a given experiment to an average quantity of 
antibodies bound per structure. The second aspect of the pipeline is the fitting 
of a continuous-time Markov chain model to the SPR binding data of both one-
antigen and two-antigen structures over a range of separation distances. This 
enables the construction of a parameterized analytical spatial tolerance equation 
that is used to predict the binding kinetics for arbitrary separation distances and 
antigen geometry. The third part of the pipeline entails the deployment of this 
fitted model for predictive purposes. The steady-state properties of a given system 
geometry are simulated by determining the distribution of states when the net flux 
between the states is zero. Large systems are simulated using an MCMC simulation 
that generates many individual trajectories of single antibodies walking on a 
user-specified pattern geometry. Mathematical explanation can be found in the 
following sections where this approach is described in more detail.

Model assumptions and constraints. We assume a coarse-grained model of 
binding states that equates all the physical states in which antibodies are bound 
by one arm as monovalent and which equates all the physical states in which 
antibodies bound by two arms as bivalent.

We assume a fixed amount of bound structures that does not change with time 
t, that is,

dRstruct

dt ≈ 0, (2)

where Rstruct is the SPR signal due to the structures and

dnstruct
dt ≈ 0, (3)

where nstruct is the molar amount of structures.
The system has an IgG reservoir that is large compared with the available 

binding surface and thus has an effectively fixed concentration, that is,

dcAb
dt ≈ 0, (4)

where cAb is the concentration of the solution-phase antibody.

Conversion from SPR signal RAb to bound antibody nAb. Consider first the 
simple 1–1 interaction of an antibody analyte that binds and unbinds to a structure 
containing a single antigen ligand.

σ_
cAbk1
⇋
k
−1

σAb, (5)

where σ_ is the state corresponding to an unoccupied structure; σAb is the state 
corresponding to a structure with a bound antibody; and k1 and k−1 are the 
association and dissociation rates, respectively.

We may work in terms of molar quantities rather than concentrations or 
surface densities, as the dimensions of the system do not change, that is,

nstruct = n_ + nAb, (6)

or we may work in terms of the molar amount of structures, both occupied and 
unoccupied (units of mol), where nAb is the number of bound antibody-structure 
complexes and n_ is the number of unoccupied structures; nAb and n_ are functions 
of t.

Therefore, the state probabilities are

p_ =
n_

nstruct
(7)

and

pAb =
nAb
nstruct

, (8)

corresponding to the unoccupied and one-antibody-occupied states, respectively.
We also define occupancy as the number of antibodies that are bound to a 

single structure for a given state. For simple one-antigen structures, this value is 
zero for the empty state and 1 for the bound state, namely,

ϕ_ = 0 (9)

and

ϕAb = 1, (10)

respectively. The average occupancy is a macroscopic description of the state 
of the system comprising N states, or the average fraction of bound antibodies per 
structure.

Φ =

N∑

i=1
piϕi (11)

For the case of the one-antigen structure, this becomes

Φ = pAb × 1 + p_ × 0 =
nAb
nstruct

. (12)

In a 1–1 binding model, a change in the SPR signal is proportional to the 
amount of bound material or, in other words, a change in the molar amount of 
structures with occupied binding sites nAb.

RAb = nAbξAb, (13)

where ξAb is a conversion factor corresponding to the expected change in the SPR 
response signal per mole of bound antibodies.

The rate of change of the occupied sites is equal to the rate of conversion of 
unoccupied sites via binding events minus the rate of the conversion of occupied 
sites via unbinding events.

dnAb
dt = k1cAbn_ − k

−1nAb (14)

The SPR signal after the structure-binding step is proportional to the molar 
amount of bound structures, that is,

Rstruct = nstructξstruct, (15)

where ξstruct is a conversion factor corresponding to the expected change in the SPR 
response signal per mole of structures.

Substituting RU-based expressions of molar amounts into equation (6), we get

n_ =
Rstruct

ξstruct
−

RAb
ξAb

. (16)

Substituting RU-based expressions of molar amounts into equation (14) yields

dnAb
dt =

1
ξAb

dRAb
dt = k1cAb

(
Rstruct

ξstruct
−

RAb
ξAb

)
− k

−1

(
RAb
ξAb

)
, (17)

which simplifies to

dRAb
dt =

ξAbk1cAbRstruct

ξstruct
− k1cAbRAb − k

−1RAb. (18)

Since we have gathered both conversion constants into one term in equation 
(18), we now define the occupancy signal factor as

ξ
∗

≡

ξAb
ξstruct

(19)

or the dimensionless ratio of molar conversion factors: bound antibody relative to 
the structure.

Note, by rearrangement, the relationship to average occupancy—that is, the 
occupancy signal factor—is the ratio of occupancy (in terms of SPR signal) to the 
molar quantities.

ξ
∗

=
RAb
nAb

nstruct
Rstruct

=
RAb
Rstruct

(
nAb
nstruct

)
−1

(20)

=
RAb
Rstruct

Φ
−1 (21)

Substituting ξ*, we then arrive at the expression for the rate of change in the 
SPR signal with respect to time as a function of the structure-binding signal and 
antibody-binding signal:

dRAb
dt = ξ

∗

k1cAbRstruct − k1cAbRAb − k
−1RAb. (22)

In the case of a monovalent structure (one antigen available for binding) at the 
point of maximum saturation when the average occupancy is unitary (Φ = 1), the 
molar quantities of the bound antibody and structures are equal:

nmax
Ab = nstruct, (23)

where nmax
Ab  is the maximum number of moles of antibody that can bind to the 

system.
Under the maximum saturation conditions, the monovalent occupancy signal 

factor then reduces to
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ξ
∗

=
Rmax
Ab

Rstruct
× 1, (24)

where Rmax
Ab  is the maximum SPR response signal due to the saturation of antibody-

binding sites.
This relationship is then used to produce a standard curve from monovalent 

structure-binding data to obtain the following linear relationship:

Rmax
Ab = Rstructξ

∗

, (25)

where an empirically determined ξ* enables one to estimate the SPR signal 
corresponding to an occupancy of one antibody per structure from the Rstruct 
signal. This is useful for structures with valence greater than 1 and whose binding 
kinetics do not obey simple 1–1 equations. Since Rmax

Ab  on a multivalent structure 
will not resemble that of the monovalent 1–1 system, we refer to this conversion 
factor obtained from monovalent Rmax

Ab  as RAbmono, that is, an SPR signal to antibody 
number conversion factor:

RAbmono ≈ Rmax
Ab , Vstruct = 1, (26)

where Vstruct is the valence.
In such cases, we obtain the average occupancy using the estimated Rmax

Ab  from 
linear regression.

Φ = f(RAb) =
nAb
nstruct

=
RAb
Rmax
Ab

(27)

Empirical estimation of Rmax
Ab . Thus, we obtain a standard curve used to convert 

the SPR signals for arbitrary structure configurations by empirically determining 
the correlation between the structure-binding signals and the maximum signals 
corresponding to saturated monovalent (one-antigen) structures, enabling 
conversion from SPR signal to occupancy in the absence of a well-understood 
binding model, provided the structure-binding signal is known.

The structure-bound signal (Supplementary Fig. 1a) is taken to be the 
difference between the signals before and after the structures are flowed over 
the chip and allowed to bind. Estimates of the parameters k1, k−1 and ξ* are 
supplied to a numerical minimization of the autocorrelation of residuals between 
the experimental and theoretical curves for the fourth-order Runge–Kutta 
approximation of equation (22), that is, the function dRAb

dt = f(RAb) recursively 
approximated according to the formula

RAb,t+1 = RAb,t +
h
6 (κn1 + 2κn2 + 2κn3 + κn4) , (28)

where h is a small timestep and the constituent terms have the form

κn1 = f(RAb,t), (29)

κn2 = f(RAb,t +
h
2 κn1), (30)

κn3 = f(RAb,t +
h
2 κn2), (31)

κn4 = f(RAb,t + hκn). (32)

For each monovalent run (Supplementary Fig. 1b,c for rabbit and mouse 
antibodies, respectively) with a unique value of Rstruct, a projected value of Rmax

Ab  
is computed using equation (25). By fitting the monovalent models to 1–1 
kinetics, we obtain the rate constants that allow the computational prediction 
of Rmax

Ab  (Supplementary Fig. 1d,e for rabbit and mouse antibodies, respectively) 
in the absence of experimental saturation conditions. This enables us to make a 
standard curve to adjust Rmono

Ab  according to Rstruct in the absence of a 1–1 Rmax
Ab  

(Supplementary Fig. 1f,g for rabbit and mouse antibodies, respectively). We use 
this value as a conversion factor, enabling us to convert the SPR RUs into the 
number of antibodies per structure (Supplementary Fig. 1h,i for rabbit and mouse 
antibodies, respectively). By knowing Rstruct, we can estimate this conversion factor 
for non-trivial antigen configurations where the multivalence influences the ease of 
reaching a saturation value corresponding to Rmax

Ab .

Equilibrium characterization with dissociation constants. The equilibrium 
dissociation constant concisely describes the relationship between analyte and 
ligand, and provides a good basis for comparison between the systems across 
experimental conditions in which the dynamic behavior can vary substantially. 
Given a model of the process, we can derive a formula for the equilibrium 
dissociation constant by solving the system of equations. For a 1–1 process, we 
have the following:

at the steady state,

dRAb
dt = 0, (33)

k1cAbRmax
Ab = k1cAbRAbeq + k

−1RAbeq . (34)

Rearranging equation (34) yields

k1cAbRmax
Ab = (k1cAb + k

−1)RAbeq (35)

and

RAbeq

(
k1
k
−1

cAb + 1
)

=
k1
k
−1

cAbRmax
Ab . (36)

For a 1–1 monovalent model, the dissociation constant is

KD =
k
−1

k1
. (37)

Thus, at equilibrium, the SPR signal is

RAbeq =
cAbRmax

Ab
KD + cAb

. (38)

An empirical measurement of the dissociation constant is obtained by 
determining the equilibrium binding signals at multiple concentrations and fitting 
the linearized form of equation (38) or

1
RAbeq

=
KD

cAbRmax
Ab

+
1

Rmax
Ab

, (39)

where RAbeq is the steady-state SPR signal due to the bound antibody.
The equilibrium dissociation constant is a good descriptive parameter that 

concisely captures the essential dynamics.
From the dissociation constant, we know the occupancy as

Φeq =
RAbeq

Rmax
Ab

=
cAb

KD + cAb
, (40)

where Φeq is the expected occupancy at the steady state.
Such a concise description is desirable for complex structures as well. However, 

the difficulty arises in the case of multivalent structures that no longer exhibit 
simple 1–1 dynamics. One approach is to simply approximate the dynamics with a 
1–1 model and obtain an apparent dissociation constant.

For the only modestly more complicated bivalent system, we can derive the 
relationship between an apparent dissociation constant and a complete model with 
two dissociation constants to describe the multiple processes taking place.

In the case of the two-antigen structure, there are N = 5 total states: one empty 
structure (σ__), two states with one monovalently occupied antigen each (σAb_ and 
σ_Ab), one state with both antigens bivalently occupied by one antibody (σ.Ab.) and a 
state with both antigens monovalently occupied by antibodies (σAbAb).

First, the reaction system can be represented according to the diagram in Fig. 1 
or the set of reactions below:

σ_,_
cAbk1
⇋
k
−1

σAb,_;σ_,_
cAbk1
⇋
k
−1

σ_,Ab, (41)

σAb,_
cAbk1
⇋
k
−1

σAb,Ab;σ_,Ab
cAbk1
⇋
k
−1

σAb,Ab, (42)

σAb,_
k2
⇋
k
−2

σ.Ab. ;σ_,Ab
k2
⇋
k
−2

σ.Ab. . (43)

We have the two dissociation constants for the processes of monovalent (KD1) 
binding and bivalent (KD2) interconversion as follows.

KD1 =
k
−1

k1
, (44)

KD2 =
k
−2

k2
. (45)

The system can be represented with a system of differential equations as 
follows:
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dpσ__

dt = −2cAbk1pσ__ + k
−1pσAb_ + k

−1pσ_Ab , (46)

dpσAb_

dt = cAbk1pσ__ − cAbk1pσAb_ − k2pσAb_ − k
−1pσAb_ + k

−1pσAbAb + k
−2pσ .Ab. ,

(47)

dpσ_Ab

dt = cAbk1pσ__ − cAbk1pσ_Ab − k2pσ_Ab − k
−1pσ_Ab + k

−1pσAbAb + k
−2pσ .Ab. ,

(48)

dpσ .Ab.

dt = k2pσAb_ + k2pσ_Ab − 2k
−2pσ .Ab. , (49)

dpσAbAb

dt = cAbk1pσAb_ + cAbk1pσ_Ab − 2k
−1pσAbAb , (50)

where pσ__, pσAb_, pσ_Ab, pσ .Ab. and pσAbAb are the probabilities of each of the five states 
in the bivalent systems, subject to the following normalization condition:

pσ__ + pσAb_ + pσ_Ab + pσ .Ab. + pσAbAb = 1. (51)

Given the knowledge of the constituent equilibrium constants, we can—in the 
simple case of the bivalent system—solve for the apparent dissociation constant as 
a function of the microconstants. This is, in effect, specifying a certain equilibrium 
value predicted on the basis of the complete bivalent model, and assuming instead 
that it is the result of the 1–1 kinetics. However, for multiple concentrations, the 
equilibrium will not shift proportionately; therefore, the apparent binding constant 
is a function of the concentration from which the equilibrium value is derived, 
making its value dependent on the conditions rather than serving as a concise 
description of the system as a whole.

The bivalent system has—at equilibrium—the condition that the rate of change 
of each of its states is zero, that is,
( dσ__

dt

)

eq
=

( dσAb_
dt

)

eq
=

( dσ_Ab
dt

)

eq
=

( dσ.Ab.
dt

)

eq
=

( dσAbAb
dt

)

eq
= 0.

(52)

This condition, in addition to the normalization conditions, allows us to solve 
for the equilibrium concentrations of each of the species in terms of rate constants 
and the fixed solution concentration of the analyte antibody, as follows:

peqσ__
=

k2
−1k−2

c2Abk21k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2
−1k−2

, (53)

peqσAb_
=

cAbk1k−1k−2

c2Abk21k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2
−1k−2

, (54)

peqσ_Ab
=

cAbk1k−1k−2

c2Abk21k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2
−1k−2

, (55)

peqσ .Ab.
=

cAbk1k2k−1

c2Abk21k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2
−1k−2

, (56)

peqσAbAb
=

c2Abk21k−2

c2Abk21k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2
−1k−2

. (57)

We can combine the states according to their corresponding occupancy—that 
is, the number of antibodies that the state contributes to the overall signal due to 
the bound antibody, where

pσ__ + pσAb_ + pσ_Ab + pσ .Ab. + pσAbAb = 1. (58)

The probabilistic definition of occupancy is the expectation value of state 
occupancy. Each state has a corresponding integer occupancy associated with the 
number of antibodies bound to the structure in that state as well as a respective 
probability of that state at any point in time. The equilibrium occupancy is, thus, 
the average occupancy of all the states weighted by their equilibrium probabilities:

Φeq =

N∑

i=1
pσ i ϕσ i = peqσ__

× 0 + (peqσAb_
+ peqσ_Ab

+ peqσ .Ab.
) × 1 + peqσAbAb

× 2. (59)

Substituting equations (53) through (57), we arrive at

Φeq =
cAbk1 (2cAbk1k−2 + k

−1 (k2 + 2k
−2))

c2Abk21k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2
−1k−2

. (60)

Apparent dissociation constant. Taking the equilibrium occupancy of the two-
antigen system from equation (60) and applying it to the equilibrium occupancy 
in terms of the 1–1 dissociation constant, equation (40) can be used to solve for an 
apparent equilibrium dissociation constant of the form

KDapp =
cAb(1 − Φeq)

Φeq
=

k
−2

(
k2
−1 − c2Abk21

)

k1 (2cAbk1k−2 + k2k−1 + 2k
−1k−2)

. (61)

This constant is a value that would be obtained from a 1–1 fit to an equilibrium 
SPR value that arose from the two-antigen kinetics. Rearranging and substituting 
equations (44) and (45) into equation (61), the formula simplifies to

KDapp =
−KD2(c2Ab − K2

D1)

2cAbKD2 + KD1 + 2KD1KD2
, (62)

which is a function of concentration and has a root at the critical value when 
cAbK2

D2 = K2
D1, that is, the point at which the average equilibrium occupancy 

greater than 1 is expected in the two-antigen system, and rendering any 1–1 
kinetics description as impossible.

The rearrangement of equation (62) enables us to determine the 
interconversion constant from an apparent dissociation constant provided that we 
know the monovalent binding constant.

KD2 =
KDappKD1

−c2Ab + K2
D1 − 2KDappcAb − 2KDappKD1

(63)

At concentrations where cAb ≪ KD1, the relationship between K2
D2 and K2

Dapp 
is relatively constant (Supplementary Fig. 2). Note that this is only valid for PSPR 
data with a two-antigen topology of a single separation distance.

Mathematical description of spatial tolerance. Spatial tolerance refers to the 
favourability of bivalent antibody binding according to the spatial distribution 
of the two adjoining antigens. Some antibodies stretch and compress more than 
others, leading to a greater chance of entering and remaining in a bivalent state. 
In our model, we propose that the monovalent binding step occurs separately 
from the bivalent binding step, and that it is purely dependent on the solution-
phase concentration and the epitope–paratope binding affinity. Spatial tolerance, 
therefore, is a property of the interconversion step from the monovalent to 
bivalent states and the reverse process (from bivalent back to monovalent). For 
antigens separated by very small distances, electrostatic repulsion in response to 
compression and steric hindrance within the IgG molecule occurs, penalizing the 
conversion to bivalent binding and/or favouring unbinding back to the monovalent 
states. Conversely, at larger separation distances, the molecule must stretch 
to accommodate the gap, again penalizing the conversion to bivalence and/or 
favouring conversion back to monovalence.

Spatial tolerance is a description of the landscape of this tradeoff—the breadth 
of the favorable region in between extremes that is conducive to bivalent binding, 
sharpness and degree of symmetry of the transitions to monovalent preference at 
close and far separations. Progressive fitting allows us to obtain KD2 for a single 
two-antigen system provided that we have determined KD1 for a one-antigen 
system, for which we take a mean run of multiple one-antigen runs (n = 6) with 
±one and two standard errors of the mean away from the mean run as uncertainty 
intervals (Supplementary Fig. 3a,i for rabbit and mouse antibodies, respectively). 
Determining KD2 for different antigen separation distances gives us an empirical 
basis for spatial tolerance. We can phenomenologically model spatial tolerance 
with an equation for determining the interconversion constant KD2 as a function of 
the separation distance between two antigens x:

KD2 = KD2-tensile + KD2-compression, (64)

where KD2-compression (Supplementary Fig. 3b,j for rabbit and mouse antibodies, 
respectively) and KD2-tensile (Supplementary Fig. 3c,k for rabbit and mouse 
antibodies, respectively) are the exponential and logistic terms, respectively. These 
separately model the decrease in interconversion due to the tensile stretch of the 
molecule at increasing distances and that due to the onset of excluded volume, 
electrostatic repulsion or steric hindrance caused by compression of the molecule 
to bridge close distances.

The tensile term is built from a logistic function and has the following form:

KD2-tensile =
Kmax
D2

1 + e−αt(x−ℓt)
, (65)

where Kmax
D2  is an upper limit of the value of KD2, αt is the logistic growth rate or 

steepness with which the tensile penalty grows at increasing separation distances 
and has units of inverse length, and ℓt is the value of the midpoint of the sigmoidal 
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curve that can be thought of as a characteristic length that defines the scale below 
which favorable interconversion occurs and above which the function approaches 
minimal interconversion.

The exponential compressive term has the form:

KD2-compression = Kmax
D2 e−αc(x−ℓc), (66)

where αc is the exponential decay rate that has units of inverse length and ℓc is 
another characteristic length parameter with units of length. The model is subject 
to the constraint ℓc < ℓt.

The combined expression yields equation (1), which predicts the 
interconversion constant as a function of separation distance (Supplementary Fig. 
3d,e for rabbit antibodies and Supplementary Fig. 3l,m for mouse antibodies). 
Uncertainty represented with vertical error bars is due to variation in the one-
antigen input data that has been propagated to obtain different KD2 values fitted 
with correspondingly different KD1 values as constraints. The horizontal error 
bars represent uncertainty in the separation distance of protruding sites on DNA 
origami nanostructures, estimated according to the method employed elsewhere44.

This can be converted into an effective or apparent dissociation constant as a 
1–1 model on the basis of the bivalent model’s prediction of equilibrium occupancy 
(Supplementary Fig. 3f,n for rabbit and mouse antibodies, respectively, and the 
‘Apparent dissociation constant’ section). The propagation of one-antigen input 
data uncertainties yields slightly different parameterizations of the model due to 
the shifted KD2 values, and thus, we see a corresponding shift in the minimum of 
the function where bivalent binding is the strongest (Supplementary Fig. 3g,o for 
rabbit and mouse antibodies, respectively).

To assess the goodness of fit, we employ a chi-squared metric where the 
expected error is computed by projecting KD2 onto a straight axis by subtracting a 
three-point moving average. Random noise in the data should be approximately 
Gaussian distributed about the moving average, and we can thus compute 
a standard error of the mean E(x) from this straightened profile of the data. 
Supplementary Fig. 3h,p for rabbit and mouse antibodies, respectively, compare the 
distribution of KD2 minus the moving average (red) and model prediction (blue), 
a dispersion that should be Gaussian/random, if appropriately fitted. The chi-
squared metric is

χ
2
=

∑

x

(KD2-obs(x) − KD2-pred(x))2

E(x)
, (67)

where KD2-obs(x) is the observed interconversion value at a distance x and KD2-pred(x) 
is that predicted by the model. A good chi-squared metric should be neither much 
less than 1.000 (indicating overfitting) nor much greater than 1.000 (indicating 
poor fit).

Markov model of arbitrary antigen pattern geometries. For the binding kinetics 
of multi-antigen patterns of systems of sizes on the order of 2–8 adjacent antigens, 
we employ a fully enumerative Markov chain model based on a complete transfer 
matrix, that is, all the possible states and transitions of the system. The antigen 
pattern itself is modeled as a discrete network of antigen sites with a Euclidean 
distance matrix as follows:

D =





0 d1,2 d1,3 … d1,N

d2,1 0 d2,3 … d2,N

d3,1 d3,2 0 … d3,N

...
...

...
. . .

...

dN,1 dN,2 dN,3 … 0





. (68)

This matrix can be simplified by applying a cutoff dcrit above which the antigens 
are considered too far apart to be neighbors. This reduces the number of possible 
states, eliminating those that are so unfavorable that they can be considered 
negligible.

A single state σi of the system is defined as a set of antigens, their status 
(empty, monovalently occupied or bivalently occupied) and a pointer indicating 
which bivalent-status antigens are linked to each other. The state space of a 
system is the set of all the states that a structure in the system can assume, namely, 
S := {σ0, σ1, …σN}. The set of states are, thus, all the possible configurations of 
empty, monovalently bound and bivalently bound antibodies given the constraints 
of pattern geometry (Supplementary Fig. 4).

Each state is linked to adjacent states by elementary transitions, that is, the 
change in status of individual antibodies comprising the state. Those transitions are 
either the concentration-dependent addition or the subtraction of a single antibody 
to the system via monovalent binding or unbinding:

σi
cAbk1
⇋
k
−1

σj , (69)

or a bivalent interconversion event where a monovalently bound antibody binds to 
an adjacent antigen site, changing its status to bivalently bound and vice versa:

σi
k2
⇋
k
−2

σj . (70)

Not all the states are necessarily connected. An adjacency matrix describes 
which states are connected by transitions.

Ai,j =

{ 1 , if ∃ connection between σi and σj

0 , otherwise
(71)

The system parameters are the set of zero-order transition rates {λ1 = cAbk1, 
λ−1 = k−1, λ2 = k2, λ−2 = k−2}. A multi-antigen–antibody system is, thus, fully 
described by the continuous-time Markov model (S,Λ) defined as the set of states 
and its corresponding transition rate matrix of the form:

Λ =

{
λ(i, j) , if Ai,j = 1

0 , if Ai,j = 0
(72)

The automated enumeration of states and their connections in systems of 
arbitrary antigen pattern geometry are accomplished using an implementation 
of the breadth-first search algorithm. The algorithm searches for edges between 
adjacent states and assigns the appropriate elementary rate process. A queue 
of neighboring states is made on the visitation of any state. One by one, the 
algorithm visits each state in the queue, populating it with additional states when 
they are discovered, and skipping the addition of states that have already been 
visited. The algorithm, thus, is characterized by an initial expansion phase of the 
queue followed by a systematic reduction of the queue until all the states have 
been visited, and the queue becomes empty. This exhaustive enumeration is 
deterministic and enables us to assemble a complete transition matrix regardless 
of the antigen geometry. However, as the number of adjacent antigens grows, 
the number of combinations increases dramatically; thus, for larger systems, a 
sampling-based approach must be used instead.

Supplementary Algorithm 1 describes the process by which the states and 
transitions are discovered starting from a single starting state. Here states are 
distinguished by the status of each of the sites ζk in the pattern, being either 
empty, monovalently occupied or bivalently occupied, as well as connected to 
another adjacent site ζs. The colored text is used to separate the different classes of 
transition.

The time complexity of the breadth-first search can be expressed as 
O(∣V∣ + ∣E∣), where ∣V∣ and ∣E∣ are the numbers of vertices and edges, respectively. 
In the case of antigen patterns, the former correspond to the number of antigens 
in the pattern. The latter correspond to the number of adjacent pairwise 
connections that are possible between two antigens. This is determined by the 
bivalent flexibility of the antibody in question; as a rule of thumb, we could say that 
antigens further than 25 nm apart are not close enough for bivalent bonds to form.

Transient (non-equilibrium) dynamics of enumerative PSPR models. The 
continuous-time Markov model enables us to compute the transient evolution of a 
system. The probability distribution

p(t) =





p0(t)

p1(t)

...

pN(t)





(73)

is a vector whose elements pi(t) are the probabilities of the respective system states 
σ0, σ1,…, σN at time t. A uniform probability distribution would, for example, 
represent equal probabilities of finding a structure in any one of the possible 
states. Another example is at the start of a single-cycle kinetics PSPR run, when 
the initial condition p(t0) is that of a distribution where p_(t0) = 1 for the state σ_ 
corresponding to an empty structure and pi(t0) = 0 for all the other states.

The transient evolution of state probabilities is computed from an initial 
condition using the linear system of Chapman–Kolmogorov differential equations:

p(t + Δt) = p(t) · Q, (74)

which uses an infinitessimal generator matrix Q obtained from the rate matrix and 
used to determine the relative rates at which state the probabilities change with 
incremental time.

Qi,j =






Λi,j , for i ̸= j

−

∑
i̸=j

Λi,j , for i = j (75)
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The infinitessimal generator is then used to compute the change in state 
probability distribution going from one timepoint to the next by the matrix 
exponential formula:

p(t + Δt) = p(t) · eQ·Δt
= p(t)

∞∑

η=0

(Q · Δt)η

η!
, (76)

where η is the computation’s depth of recursion—the higher it is, the more accurate 
the result is; Δt is an incremental advancement in time. Due to the numerical 
instability of this solution, we employ the uniformized discrete-time Markov 
chain method of Fox and Glynn to stably compute equation (76) (ref. 45). The 
continuous-time Markov model (S,Λ) is approximated by a discrete model (S,U) 
by renormalizing the generator matrix with respect to the fastest outgoing rate or 
the uniformization rate q:

U := I + Q
q
, q ≥ maxi{|Qi,i|}, (77)

where I is the identity matrix.
Supplementary Algorithm 2 shows how this matrix is generated in practice.
Equation (76) becomes the approximation

p(t + Δt) =

p(t) · eQ·Δt
= p(t) · eq(U−I)·Δt

= p(t) · eqUΔte−qIΔt
= p(t)e−qΔt · eqUΔt.

(78)

The matrix exponential is then approximated with the following Taylor series 
expansion.

p(t + Δt) = p(t) · eqΔt
·

∞∑

η=0

(qΔtU)
η

η!
=

∞∑

η=0

e−qΔt
(qΔt)η

η!
· p(t) · Uη (79)

Using equation (79), we can stably compute the transient evolution of a system 
from an initial condition.

The system entropy can by computed as

S = −kB
∑

σ i∈S

pi(t) ln[pi(t)]. (80)

where kB is the Boltzmann constant.
Supplementary Algorithm 3 shows how the probability distributions at 

different timepoints are computed from an initial condition.

Fitting continuous-time Markov models to PSPR data using autocorrelation of 
residuals. By using equation (79) to compute the transient probability distribution 
of the system, we are able to also compute the occupancy at each timepoint using 
the definition from equation (11). The system occupancy is, thus, a function of 
time of the form

Φ(t) =

N∑

i=1
pi(t)ϕi . (81)

The continuous-time Markov model is fitted to the experimental data by 
comparing occupancies computed on the basis of equations (79) and (81) with that 
of the occupancy computed from the normalizing PSPR data via equation (27); 
evidently, the theoretical curve either correctly or incorrectly fits the experimental 
data depending on the parameterization (Supplementary Figs. 5a and 6a). The 
residuals (Supplementary Figs. 5b and 6b) are computed by

e(t) = Φ(RAb) − Φ(t, S,U). (82)

Although fitting by minimizing the sum of the squared residuals can be used 
to obtain acceptable model parameterizations, we used residual analysis with 
autocorrelation to improve the robustness of fitting and reduce the systematic mis-
parameterization by making fits more sensitive to divergence in curve shapes. We 
compute an absolute, average autocorrelation over a fixed interval kΔt with k = 50 
as

ρe,e(t, t + kΔt) =

√
(
∑

ke · |
−→v |)

2

k
(83)

where e(t, k) = [e(t), e(t + Δt),…, e(t + kΔt)], −→v = [0, 1, …k] and |−→v | is the 
conjugate of −→v . The objective function min(E) numerically minimized to 
obtain fits to the experimental PSPR data is then the sum-squared residual vector 
weighted by its autocorrelation vector.

E =

tf−k+1∑

t=0
ρe,e(t, t + k)

√
e(t)2 (84)

This provides an error function sensitive to sustained divergence of the model 
and experimental data (Supplementary Fig. 6c) even if the two curves cross paths, 
and like summing the residuals provides a low value when the alignment is good 
(Supplementary Fig. 5c).

We performed a cross-validation of the Markov model fitting by 
parameterizing based on the experimental data from various antigen patterns (all 
with fixed nearest-neighbor separation distances between the antigens to remove 
the complication of separation-distance dependence of the binding kinetics). 
The rate parameters derived from these training data were then fixed and the 
model was applied to other patterns as a limited test of the extrapolation of a 
parameterized model to different antigen pattern geometries. The absolute sums 
of residuals (Supplementary Fig. 7a) and absolute sums of residuals weighted by 
autocorrelation (Supplementary Fig. 7b) show that the best-performing models 
were those that are the most complex and exhibit bivalence such as hexagonal 
and pentagonal configurations in the last two rows. This suggests that downward 
extrapolation in pattern complexity is more viable than upward.

To validate the spatial tolerance model, we conducted a blinded test in which 
an a priori prediction was made using the spatial tolerance parameters (Fig. 
2f). This was done with the rabbit anti-DIG IgG antibody. The data used for 
prediction consisted entirely of the averaged one-antigen data and the series of 
two-antigen varied-separation-distance data used to parameterize the model 
and the structure-binding data to determine the conversion factor from RU to 
occupancy, and vice versa. Thus, no data with structures configured with more 
than two antigens was used for parameterization. To perform the test, we chose to 
predict the evolution of a trimeric 7.2 × 14.3 × 16.0 nm configuration with the same 
single-cycle kinetics protocol of timed known-concentration injections used for 
the other runs in this study (Supplementary Fig. 7c). Predictions were made first 
by computing the expected occupancy values on a per-structure basis. These were 
then converted into SPR RUs by multiplying them with the Rmax

Ab  value determined 
from the structure-binding curve and standard curve (Supplementary Fig. 1). The 
experimental results were withheld until predictions were made, and were then 
revealed and compared with the theoretical curves each done in triplicate with the 
respective structure-binding data used for each one (Supplementary Fig. 7d).

An important question to consider is how sensitive the stratified-state 
probability distribution predictions are to error in the antibody concentration. As 
shown earlier, the distribution is dependent on concentration and timing; however, 
the answer is probably fairly complex. This is because different phases (Fig. 3a–c) 
are structured in a complex manner in terms of their concentration intervals and 
shape of transitions between phases. To get only a very rough idea of the sensitivity 
though, what we have done for the triangle structure is to change each of the 
concentrations by factors of 0.5, 0.9, 1.1 and 2.0 (Supplementary Fig. 8a) to see how 
this affects both the resulting transient probability distribution (Supplementary 
Fig. 8b) and the relative correspondence of the predicted curve to that of the 
experimental data (Supplementary Fig. 8c). Evidently, the probability distribution 
is fairly robust, with the five most represented states remaining unchanged in all 
the five conditions, albeit their relative ranking changes slightly, for example, going 
from 1.1x to 2.0x.

Determination of thermodynamic properties. We can obtain the equilibrium 
probabilities from uniformized continuous-time Markov chain first by simulation 
out to long timescales at a fixed solution concentration until the probabilities cease 
to change.

p∗

= lim
t→∞

p(t),
( d
dtp(t)

)

cAb
= 0 (85)

We can determine the steady-state probability distribution more expediently on 
the basis of the infinitessimal generator matrix, that is, equation (75), numerically 
solving for the probability distribution which—when multiplied with the generator 
matrix—produces a vector of zeros, meaning that there is zero change from one 
moment to the next, subject to the normalization condition in which all the 
probabilities must sum to 1. That is, the steady-state probability distribution is the 
solution to the matrix equation

p · Q = 0,
∑

σ i∈S

pi = 1. (86)

The multi-antigen structure in the context of a PSPR experiment is an open 
system, freely allowed to exchange particles with the large external reservoir 
connected to it. With (T, V, cAb) held constant, the system (an antigen-patterned 
structure) will approach a minimum free energy at the steady state by exchanging 
antibodies with the bath, obeying the Boltzmann distribution law

p∗i =
e−Ei/kBT

∑
σ i∈S

e−Ei/kBT
=

e−Ei/kBT

Z
, (87)

where Z is a grand canonical partition function that predicts equilibrium at a 
grand potential free-energy minimum dΦ(T, V, μAb) = 0 with chemical potential 
µAb = –kBTln[cAb], and Eipi = μAb + μmononmono + μbivnbiv are the state energies 
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determined by the environmental potential due to solution-phase antibody 
concentration and individual potentials of antibody monovalent and bivalent 
bonds populating the state; further, nmono denotes the monovalent bonds and nbiv 
denotes the bivalent bonds with chemical potentials μmono and μbiv, respectively. The 
value of Z and the state energies are numerically solved for a given steady-state 
probability distribution, making it possible for us to determine the thermodynamic 
quantities.

We can obtain the thermodynamic quantities such as the solution-
concentration-dependent equilibrium grand potential free energy via

Ω∗

= −kBT lnZ. (88)

The equilibrium probabilities enable us to calculate the relative potential 
differences as

p∗i
p∗j

= e−(Ei−Ej)/kBT. (89)

This makes it possible to compute the chemical potentials of monovalent 
and bivalent bonds, for example, from the basic two-antigen system of a fixed 
separation, by comparing the equilibrium probabilities in states that differ by 
exactly one bond of a given type. This is equivalent to obtaining the change in free 
energy via the dissociation constant for that process.

μ0−1 = Emono − Eempty =

(
∂Ω

∂Nmono

)

T,P,Nbiv
=

−kBT ln
[ ∑

nmono
p∗mono

∑

nempty
p∗empty

]
+ kBT ln cAb = −kBT ln

[
nmono

nemptyKD1

]
,

(90)

μ1−2 = Ebiv − Emono =

(
∂Ω
∂Nbiv

)

T,P,Nempty
=

−kBT ln
[ ∑

nbiv
p∗biv

∑

nmono
p∗mono

]
= −kBT ln

[
nbiv

nmonoKD2

]
,

(91)

where nempty, nmono and nbiv are the degeneracies of empty, monovalently one-
occupied and bivalently one-occupied states, respectively. For the two-antigen 
system, these values are 1, 2 and 1, respectively. For the rabbit anti-DIG IgG model 
and a separation distance of 15 nm, the chemical potentials are μ0−1 = 1.805 × 10−20 J 
per particle and μ1−2 = 8.889 × 10−21 J per particle.

We can also obtain a stand-alone bivalent-binding chemical potential such that 
tallying the number of monovalent and bivalent molecules in a state would yield 
the potential of that state.

μ0−2 = Ebiv − Eempty = μ0−1 + μ1−2 =

(
∂Ω
∂Nbiv

)

T,P,Nmono
= −kBT ln

[ ∑

nbiv
p∗biv

p∗empty

]
+ kBT ln cAb

(92)

This gives us μ0−2 = 2.693 × 10−20 J per particle for 15 nm separation. By this 
method, the distance-dependent KD2 model of equation (1) can be converted into a 
chemical potential curve.

MCMC version of the model. Systems with larger numbers of bivalent 
connections have many states and transitions, and the fully enumerative 
continuous-time Markov chain does not scale well. For these systems, we use the 
MCMC sampling approach in which only the local states are computed throughout 
the trajectory of a single system. Multiple trajectories are sampled to approach and 
approximate the probability distributions that would otherwise be computed to a 
higher precision for the enumerative method. Instead of computing the flux of state 
probabilities over fixed intervals of time, we instead computed Poisson intervals 
(dwell times) of states according to the rates of processes that each state is subject 
to here. For any particular state σi, there is a set of adjacent states σj ∀ j such that 
Ai,j ≠ 0.

The exit rate of that state is then the summation of all the outgoing rates:

λexit =
∑

∀j
λi,j|Ai,j ̸= 0, (93)

and the corresponding dwell time in that state comes from the exponential 
cumulative distribution function

τ =
ln[1/p]

λexit
, (94)

where p is the probability that a transition to a neighboring state occurs within the 
time interval and dwell time τ is a random variable that we may sample by choosing 
random values of p from the interval [0, 1].

The choice of state given that a transition occurs is then a matter of the relative 
rates λi,j for the different states σj, with each state having a probability pj = λi,j

λexit
 of 

becoming the destination state.
A single iteration, thus, starts with an initial state, followed by the enumeration 

of each of the adjacent states, and random sampling to determine both dwell time 
and destination after the transition. The simulation involves performing multiple 
random walks and keeping track of the occupancy and state distribution over a 
discretized timeline.

Supplementary Algorithm 4 shows how this random-walk MCMC approach 
is used to simulate the antibody dynamics by computing the dwell times and local 
state-to-state transitions.

Experimental methods. Some experimental data used in this work were presented 
previously18 and were not analysed further than a basic fitting to a standard 1–1 
model. In the current work, we have used the data to develop a more accurate 
mechanistic model, a pipeline for constructing such models from a minimal 
dataset, an in-depth physical characterization framework and a de novo simulation 
that goes beyond the previous work.

Reagents. Oligonucleotides (unmodified and DIG modified) in 96-well plates were 
purchased from IDT. Chemicals (NaCl, KCl, MgCl2, Tris-HCl, EDTA, PEG800, 
NaOH, KOAc, KOH and NaOAc) for buffer preparation were purchased from 
Sigma-Aldrich. Rabbit anti-DIG IgG (no. 9H27L19) was purchased from Thermo 
Scientific. Streptavidin was purchased from Sigma-Aldrich and mouse anti-
DIG IgG1 (no. ab420) was purchased from Abcam. Phosphate-buffered saline 
(1 M stock solution) was purchased from Sigma-Aldrich. BIAcore consumables 
(CM3 sensor chip and HBS-EP (HEPES 10 mM, NaCl 150 mM, EDTA 3 mM, 
0.005% Tween 20) running buffer) were purchased from GE Healthcare. Amicon 
centrifugal filters with 100 kDa molecular weight cutoff were purchased from 
Merck Millipore.

Origami design and production. The 18-helix bundle DNA origami nanotube 
was designed with caDNAno46 using the honeycomb lattice. This structure has 
been characterized earlier18,33,34,47. In short, the p7560 scaffold was extracted 
from the M13 phage, and the 18-helix bundle DNA nanotube was folded under 
the following conditions: 20 nM scaffold, 100 nM each staple oligonucleotide, 
13 mM MgCl2, 5 mM Tris at pH 8.5, 1 mM EDTA. The mixture was subjected to 
heat denaturation at 80 °C for 5 min followed by a slow cooling ramp from 80 to 
60 °C over 20 min and 60 to 24 °C over 14 h. The excess staples were removed by 
ultrafiltration with Amicon 100 kDa molecular weight cutoff filters. The wash 
buffer used was 1× phosphate-buffered saline supplemented with 10 mM MgCl2.

PSPR protocol. A BIAcore t200 instrument (GE Healthcare) was used for the 
SPR experiments. The running buffer used in all the experiments is HBS-
EP supplemented with 10 mM MgCl2. The flow rate used for all the kinetics 
experiments is 30 μl min–1. Streptavidin was diluted to a final concentration of 
10 μg ml–1 in 10 mM NaOAc at pH 4.5 and chemically attached to the CM3 sensor 
chip with N-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide coupling (using the standard protocol from GE Healthcare). Anchor 
oligonucleotides containing a 3'-biotin modification were diluted to 200 nM in 
1× HBS-EP running buffer and injected over the surface for 20 min followed 
by the washing of non-specifically bound oligos by injecting 50 mM NaOH for 
5 min. The DNA nanostructures were diluted to 5 nM and injected over the 
surface for 20 mins followed by washing with the running buffer for 10 min. The 
antibodies were diluted to various concentrations in the running buffer, ranging 
from 0.025 to 0.500 nM. The single-cycle kinetics injection method was used 
to sequentially inject the antibody solution over the surface, starting from the 
lowest concentration; the contact time for each concentration is 5 min. After the 
final antibody injection, the dissociation curve was recorded for 15 min. The 
immobilized DNA nanostructures and bound antibodies were removed from the 
surface by injecting 50 mM NaOH for 5 min; then, the surface is ready for the next 
round of experiments. The t200 evaluation software was initially used to fit the 
acquired data; for this, we used a 1:1 Langmiur binding model to fit the data and 
estimate the values of ka, kd, the association and dissociation rates, respectively, and 
dissociation constant KD and antibody-binding capacity (Supplementary Section 6 
details the apparent dissociation constant).

Run design. The parameterization pipeline first requires a dosing scheme for the 
single-cycle kinetics program, that is, the timing and concentrations of the staged 
antibody injections into the system. Since different antibody–antigen systems are 
going to exhibit different kinetic profiles, we believe the following considerations 
could help inform the initial choice of dosing scheme.

First, an approximate knowledge of KD1 is probably the best starting point. 
Some antibody suppliers report an in-house measured KD (KD1 by our terminology) 
or else report those values published by researchers who used their product, and 
this value can also be determined with a single ELISA experiment48. Knowing 
this, it is possible to choose a dosing scheme that elicits both monovalent (KD1-
dominated) kinetics and bivalent (KD2-dominated) kinetics. KD1-dominated 
kinetics occur when the magnitude of KD1/cAb is smaller than KD2, that is, at higher 

Nature Computational Science | VOL 2 | March 2022 | 179–192 | www.nature.com/natcomputsci190

http://www.nature.com/natcomputsci


ArticlesNATure COmpuTATiOnAl Science

relative concentrations. However, KD2-dominated effects are the most apparent at 
lower concentrations or during the dissociation phase when the concentration is 
set to zero. Although KD2 is molecule specific, this value is probably subject to less 
variation among the commonly used isotypes. Therefore, even if KD2 is unknown 
at first, it may be a reasonable starting estimate to assume that it is similar to 
the values found in our study, that is, of the order of 10−2 around the optimal 
separation distances. Thus, framing a dosing series based on a supplier’s reported 
KD1 value and concentrations that span a range where relative KD1/cAb to KD2 goes 
through an inversion is likely to capture a useful range of kinetics well suited 
to parameterizing the model. The following concentrations and corresponding 
injection timings were used for most experiments in our study: timepoints (s): 0, 
84, 384, 475, 775, 866, 1,166, 1,257, 1,557, 1,656 and 1,956; concentrations (nM): 0, 
0.025, 0, 0.050, 0, 0.100, 0, 0.250, 0, 0.500 and 0.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw experimental data used to produce the results of this study can be found at 
https://github.com/Intertangler/spatial_tolerance/tree/master/data_repository and 
Zenodo49 under the subfolder ‘Data repository’. Data are licensed under the GNU 
General Public License. Source data for Figs. 2–4 are provided with this paper. 
In addition to the raw data, the GitHub/Zenodo repository contains the Jupyter 
Notebooks detailing the generation of our results including intermediate data and 
figures and plots are posted in ready-to-run form for reproduction.

Code availability
All the codes used to produce the results of this study including installation, 
demonstration and result reproduction instructions are available on GitHub 
(https://github.com/Intertangler/spatial_tolerance) and Zenodo49. The code is 
licensed under the GNU General Public License.
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