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An important problem in nanotechnology is to develop a method for assembling complex, aperiodic,
structures. While simple self-assembly will not be able to address this problem, programmable-,
or algorithmic-, self-assembly is powerful enough to be a potential solution. Here, we address the
question of how the basic properties of the constituent building blocks are related to the periodicity
of the resulting assembly. By introducing the parameters unique structures, which gives a measure
of the complexity of an assembly, and bond uniqueness, which gives a measure of how the building
blocks fit together, we show how to quantify the structural quality of a general assembly system and
present relations between the parameters. The introduced methods will be helpful when design-
ing assembly systems to be used for direct fabrication of nanosystems or for nano-scaffolds and
addressable arrays.
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1. INTRODUCTION

Probably, the single most important problem in nanotech-
nology is to develop a method for assembling complex
structures, such as a nanochip. Today, in microelectronics
different types of lithography is used to define the struc-
tures. These methods are referred to as top-down methods.
However, the continuing route towards smaller structures
using top-down methods is increasingly difficult, which is
reflected in fabrication costs that are growing much faster
than the electronic market.1

A bottom-up building approach based on self-assembly
has been widely discussed as an alternative method for
nanofabrication. In self-assembly the building blocks, that
could be atoms, molecules, or larger structures, diffuse
around and eventually bind to a specific location. The sim-
plest type of self-assembly, such as self-assembling mono-
layers or growth of nanowires, will merely lead to a
non-complex crystal, and will be of little use to assem-
ble a chip. We refer to this simplest type of self-assembly
as crystal self-assembly (Fig. 1a). At the other extreme
are building blocks that all have a unique address tag
that will bind to a corresponding address. Using this
unique addressing self-assembly method any kind of com-
plex structure might be build, but a large number of
building blocks are needed (Fig. 1b). Between these two
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extremes is programmable self-assembly (or algorithmic
self-assembly)2�3 (Fig. 1c).

A formal model for studies of programmable self-
assembly is the Tile Assembly Model4 where the building
blocks called tiles are self-assembled into a square lattice.
The model is an extension of Wangs theory of tiling,5 but
each of the sides of the square tiles contains a glue that
allow binding of another tiles to the sides. The glue is spe-
cific so only a tile-side with the same corresponding glue
will bind. Growth starts from a seed tile by adding one tile
at the time. By designing the tiles in a specific way the
growth can be programmed. Programmable self-assembly
is powerful, for example, it has been shown to be capable
of universal computation.6 The Tile Assembly Model has
been used for investigation of, for example, the minimum
number of tiles needed to self-assemble a square of a cer-
tain size (program size complexity),4 the time complexity,7

optimal size and time complexity,8 or whether a given
tile system uniquely produce a given shape.9 Furthermore,
algorithmic self-assembly systems have been proposed as
a tool to study self-replication10 in a manner similar to von
Neumann self-replicating machines.11

Experimentally, DNA double-crossover molecules with
four sticky ends, which are analogues to the four sides of
the Wang tiles, have been demonstrated to assemble into
two-dimensional lattices.12 Another experimental demon-
stration, of a much more complex pattern, is the algorith-
mic assembly of DNA Sierpinski triangles.2 Macroscopic
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systems based on millimeter-scale plastic tiles that float
on a liquid13�14 can also be used for experimental realiza-
tion of algorithmic self-assembly.3 Recently, DNA-linked
nanoparticles has been suggested as a base for pro-
grammable self-assembly.15 Another path, for doing
programmable self-assembly, is to first self-assemble a
scaffold of technologically simple building-blocks, then,
self-assemble the interesting devices on the addressable
sites created by the scaffold assembly. Potential scaffold
materials are for example DNA-crystals12�16–19 mentioned
above or DNA-linked nanoparticles20�21 as well as more
advanced biological systems like proteins22 or viruses.23

Using metallization of the biomolecules, the scaffold can
also act as an electrical contact between the devices assem-
bled upon the scaffold.24 For reviews on some of these
self-assembly systems see Refs. �25� 26�.

Suppose, that a complex nanosystem, say an electronic
chip, is going to be built using programmable self-assem-
bly. From an engineering point of view it is important to
know the limits of the assembly system given an avail-
able technology. This paper describes a solution to this
problem by introducing two parameters: unique structures
which gives a measure of how complex the final structure
is and the bond uniqueness parameter—which is related to
the specificity of the glue or bonds. Together with other
building block parameters, such as the number of different
types and their total number, we will give limits as well
as trade-off relations between different assembly designs.
The task of designing an assembly system so that it gives
the desired amount of unique structures is discussed in
Section 4 where we propose a method for the design of
square tile systems.

2. CLASSES OF SELF-ASSEMBLY

In the following we use the word tile to denote a gen-
eral assembly building block. A tile have one or more
functional edges with specific types of glues, or bonds.

Depending on the types of open bonds on the self-
assembly tiles and on the physical process that makes the
tiles assemble, we classify the process according to the
type of assembly it can produce.

In Crystal self-assembly (Fig. 1(a)) patterns of tiles are
reproduced throughout the assembly. Since a crystal self-
assembly (CA) repeats itself, the neighborhood of each
tile must be identical everywhere in the assembly. This
leads to the conclusion that each open bond of a crystal
tile can only make a bond with one specific type of tile.
This constraint on the assembly process assures that each
tile of a certain type has the same type of tile neighbors
everywhere.

In a unique addressing assembly (UA) (Fig. 1(b)), each
tile type only occurs once and the tile position is com-
pletely defined.4 Each bond must be specific as to what
type of tile it can accept, like in the CA case above. There
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Fig. 1. Classes of self-assembly systems and unique structures (encir-
cled in gray) in generated assembly patterns. (a) Type 1 bonds can con-
nect to type 0 bonds. Each of the tiles bonds can only connect to one
other type of tile. This leads to crystal type assembly. The only unique
structure is the entire assembly. (b) Each tile has bonds that can connect
only to one other type of tile, and each tile has no more than one type
of each bond. The resulting assembly type is unique addressing where
each tile constitutes a unique structure. (c) In this case each bond can
host two different types of tiles. Together with the added criterion that
each incoming tile must interact with at least two other tiles in order to
assemble, the process is now of the PSA class. This assembly process
needs to be nucleated for the assembly to grow. The resulting assembly
in (c) has six unique structures of 4 tiles each (S = 6, � = 4).

must also exist a unique way to arrange the tiles so that
there are no more open bonds or so that the remaining
open bonds are blocked by the assembly itself.

A Programmable Self-Assembly (Fig. 1(c)) (PSA) sys-
tem produces assemblies where one can find both repeat-
ing and unique patterns of tiles. For this to happen, some,
or all, of the open bonds of a PSA tile must be able to
bond to more than one type of tiles. Since an assembled
PSA tile must, according to the above definition, accept
at least two different types of new neighbors the process
is not deterministic and thus not programmable; a single
PSA tile alone cannot uniquely define the next tile in the
assembly. At least one second neighboring, PSA tile needs
to be present to uniquely determine the next tile type. One
thus introduce the added criterion that a new tile must
bind to at least two, already assembled, tiles; i.e., two tiles
is the smallest structure that define the type of the third
tile to be assembled. We do not know if this is gener-
ally true that programmable semi repetitive systems need
this assembly criteria. This feature seems to be the single
most important factor for the creation of complex assem-
blies. In nature, this type of dependent binding has been
shown to be an important feature. For example in the self
assembly of ribosomes certain proteins do only assemble
if the growing ribosome assembly contains a certain pair
of previously assembled proteins.27

Winfree and Rothemund has made a similar observa-
tion in discussions of the need for cooperation in order
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for the assembly process to be programmable.4 Klavins
et al.28 has proved that no binary grammar can generate
a unique stable assembly, however, this proof is valid for
self-assembly systems with conformal switching tiles, i.e.,
building blocks that change state after being assembled.

3. UNIQUE STRUCTURES
AND BOND UNIQUENESS

As noted in the introductory discussion above, one issue
that makes self-assembly interesting for nanotechnology is
the ability to construct scaffolds with uniquely addressable
structures. In the following we will show how it is possible
to estimate the number of unique structures that a certain
assembly system can produce.

In each finite assembly, one can identify a certain num-
ber of unique structures, S. A unique structure is a number
of connected tiles that is not reproduced anywhere else in
the assembly. As an example, the string ac is a unique
structure in aaabacabca while ab is not. The mini-
mum number of tiles needed to define a unique structure
is denoted � or, number of tiles per unique structure. The
symbol N will be used to specify the total number of tiles
that constitute the assembly in the discussion that follows.
The number of tile types will be denoted by w.

The patterns in Figure 1 are examples of a few simple
cases where finding S and � is straightforward. In general
it is always possible to divide an assembly into S unique
structures of � tiles in each structure. The pair �S��	 is
defined to be; the maximum possible S, and the � that
gives this maximum. A unique structure parser algorithm
for finding the values of the pair � and S in any finite
assembly, can be constructed. Note that unique structures
may not overlap. This way, each unique structure can be
interpreted as an address in a scaffold, to be used for sub-
sequent assembly.

Consider the task of assembling a linear structure of
S addressable locations. Since each location should be
uniquely addressable, the structure constituting the loca-
tion must be globally unique. One way to proceed is to
make exactly S tiles that stick together in only one way
(unique addressing, see Fig. 2(a)), or to make some num-
ber w of unique tiles where w < S (PSA). If one chooses
the later strategy one must figure out a clever way to make
the w tile types assemble into S unique structures. Two
examples of model PSA systems are found in Figures 2(b)
and (c). The prime-tower assembly (Fig. 2(b)) counts to a
product of two prime numbers and then stops the assem-
bly. This type of process is similar to the vernier process
in biology, that is believed to be a length controlling mech-
anism in linear protein assembly.29 The counter by Cheng,
Goel, and Moisset de Espanés (CGM)8 is an assembly
counter that is optimized to use as few tile-types as pos-
sible (optimized for low w) and still be able to produce
arbitrarily long sequences. Each row is log2 S tiles wide
and constitutes a unique structure and w = 8.
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Fig. 2. A plot of S versus � for different kind of linear-, counter type-,
assemblies at constant number of total tiles, N . The �-axis is logarith-
mic. The solid line represents the bound S = N/�. The insets (a)–(c)
show model systems of linear assembly displaying S unique structures.
The process in (a) is an example of a one-dimensional UA assembly.
(b) Shows a modulo-prime counter. Two sets of tiles, a’s and b’s, con-
sisting of pa and pb tiles each (pa�b are prime numbers). The assembly
stops when tiles apa

and bpb are next to one another. To the right: phys-
ical model of the assembly. Left: a graph displaying the bond structure.
In (c) the counter is of the type described in Ref. [8] (referred to as
CGM-counter in this paper). This is a pseudo binary counter under the
tile assembly model4 that uses 8 distinct tiles. In the described model sys-
tems each row constitutes a unique structure. The prime number counter
have �= 2 and S ∼ N/2. The CGM counter have �= log2 S where S is
determined from the equation S = N/ log2 S. The dotted and the dashed
lines are Eq. (2) written with the values of w and bu for the prime-counter
and the CGM counter, respectively. (The graph is plotted for N = 100.)

When the total number of tiles, N , is constant, it is
possible to draw some conclusions about S and � for
several types of assembly processes. The simplest cases
being unique addressing, where S would be equal to N
and �= 1, and crystal type assembly, where S would be 1
and � = N . Programmable self assembly lies somewhere
in between. We start the discussion by considering the
number of possible ways one may assemble a substructure
containing � tiles.

If the assembly is random, the number of ways that
one may combine � tiles chosen from w types is given
by w�. PSA processes are not random however, and the
number of ways one may combine tiles into structures of
� tiles is limited by the bond uniqueness of the assembly
system.

The bond uniqueness, bu, for an assembly system is
defined as the average number of tile types that each open
bond can bind to. For example in the assembly system in
Figure 1(c) the bond uniqueness is equal to two because
each specific open bond can only harbor two different tile
types on average. If the number of bonds per tile is denoted
k (k= 4 for the square-tile systems discussed below, since
each tile has four bonds), the total number of bonds on all
the tile types is wk. Each bond on each tile type is given
an index i. The bond uniqueness is then calculated in the
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following way:

bu =
∑kw

i No. of tile types that bond i can bind to
kw

(1)

Returning now to the construction of structures contain-
ing � tiles. The first tile in such a structure can be chosen
at will from the w available tile types. Once this tile is
specified however, the following tile types to be placed
next to the original tile, can only be chosen from a subset
of the tile types, containing bu tiles. So a row (� tiles wide)
in a linear-, counter type-, assembly can be constructed
in wb�−1

u number of ways. If each row is to constitute a
unique structure we get that the maximum number of rows,
i.e., the maximum S for the given � is:

S = wb�−1
u (2)

This equation, together with N = S�, gives the number
of unique structures for linear-, counter type-, assemblies
(see Fig. 2).

In two dimensional assembly we consider each unique
structure to be a square of � tiles. Once the edge is spec-
ified, in the form of an L, the interior is uniquely deter-
mined by the assembly system. The corner tile can be
chosen among all w tile types and each arm of the L-
shaped edge can be chosen in b��1/2−2	

u ways (the structures
are assumed to be square and the edges thus �1/2 tiles
long). In general we get that the number of possible ways
to build structures containing � tiles is given by the fol-
lowing expression:

No. of possible �-structures = wb��1/D−D	
u (3)

where D is a dimensionality constant that is equal to 2 or
3 depending on whether the assembly is two-dimensional
or three-dimensional.

Consider a two dimensional assembly with N tiles
(assume that it is

√
N ×√

N tiles big). There are �
√
�N 	−√

�+1	2 locations where a
√
�×√

�-tiles structure may
be located (result from 2D-word pattern matching see for
example Ref. [30]). Assume that each one of these struc-
tures must be unique and that we use the maximum num-
ber of variations of �-structures that the tile system may
produce. Then from Eq. (3) we get that

wb�2�1/2−2	
u = �

√
�N 	−√

�+1	2 (4)

And in general

wb�D�1/D−D	
u = �N 1/D −�1/D +1	D (5)

Now note again that, since the S unique structures that we
seek may not overlap, the total number of tiles is � taken
S times:

N = S� (6)

Using (6) to solve for S in (5), and taking logarithms we
get the following result:

S = N

(
D logbu

log
[ bDu

w
��N 1/D − � N

S
	1/D +1	D	

]
)D

(7)
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Fig. 3. Characteristics resulting form Eq. (7) showing the number of
unique structures, S, in a two dimensional assembly plotted as a function
of the number of tile types, w. bu =

√
w is assumed. Plotted for two

values of total number of tiles N where N1 = 1000 and N2 = 6000. As the
number of tile types is increased the growth of S slows down. The inset
shows the same curves but instead of S we plot the size of the unique
structures, �, on the y-axis (where � = N/S). The w-axis is logarithmic
in this case. As w is increased the size of the unique structures rapidly
decreases.

Equation (7) gives the maximum number of unique
structures of a PSA process of N total tiles with w tile
types and bond uniqueness bu. This relation gives an opti-
mal number of unique structures, in practice, the value of
S could be less than this depending on the periodicity of
the seed or nucleation process used. In Figure 3 a graphical
interpretation of (7) is given.

3.1. Example of Application

The results above will be helpful when designing nanosys-
tems using self-assembly. Consider an example where one
wants to construct a scaffold for nanodevices. Lets say
that we have the technology to produce 9 types of build-
ing blocks that each measures 13 nm × 13 nm. They
have bu = 3. How many uniquely addressable structures
can we optimally produce in an area measuring 1 �m ×
1 �m. The total number of tiles we have room for is thus
N ≈ 5900. Using Eq. (7) with D = 2, and solving numer-
ically, we get that the maximum number of unique struc-
tures is approximately 380 so � = N/S ≈ 15�5. It should
thus be possible to construct a scaffold comprising some
370 addressable sites, each containing 16 tiles. (If one
uses � = 15, which is less than the estimated value, the
assembly system will not be able to cover the entire area
with unique structures, some will necessarily be repeated.)
The unique structures/addressable locations are thus in the
order of 50 nm × 50 nm. If one wishes to make them
smaller, more tile types are needed.

4. DESIGN OF A SELF-ASSEMBLY SYSTEM

Once the important design parameters are fixed, how do
one proceed with the actual design of the building blocks?
We assume that the values of w (number of tile types) and

4 J. Comput. Theor. Nanosci. 3, 1–7, 2006
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bu (bond uniqueness) have been determined to provide the
desired amount non-periodicity in the assembly by using
Eq. (7) (i.e., the desired amount of unique structures). Lets
consider the case where a two-dimensional assembly is
constructed from square tiles, each of them having four
bonds to assemble into a square lattice. Similar schemes as
the one presented here may be used for any type of plane-
filling, or space-filling tiles. The bonds are considered to
be of a complimentary nature so that a bond may not bind
to a bond of the same type but only to its complement.
Examples of complementary bond types are DNA-strands
and jigsaw-puzzle pieces.

The tiles can be made non-rotatable by dividing the
bonds into north-south and east-west pairs.† North-bonds
must thus be complementary to south-bonds and east-
bonds complementary to west-bonds. We denote by nNS

and nEW the number of bond-pairs that are of the north-
south-, and east-west-type, respectively. So, the total num-
ber of bonds of the south type for example is nNS, of the
north type nNS, and together they form nNS complementary
pairs. Assembly growth is possible in any direction.

Remember that the bond uniqueness is the average num-
ber of tile-types that each bond can bind to. Now we know
that the number of south bonds is nNS, the number of tile-
types is w, so each type of south bond can be found on
w/nNS tile types on average. By consequence, the north
bonds will have an average bond uniqueness of w/nNS. By
the same argument the south bonds will have an average
bu of w/nNS and the east and west bonds an average bu
of w/nEW each. The total bond uniqueness is the average
over the four E-W-S-N bond classes:

bu =
w

2

(
1
nNS

+ 1
nEW

)
(8)

To relate the values of nNS and nEW with the number
of tile types, w, we will now consider the number of pos-
sibilities to construct corner sites. A corner site is a site
where programmable self-assembly can occur, i.e., a site
in the assembly where an incoming tile may bind to at
least two other assembled tiles. In this discussion we con-
sider square, two-dimensional tiles, so the corner sites are
L-shaped trimers, like the one in Figure 4. The bottom left
tile‡ can be chosen at will from the w tiles whereas the tiles
to the north and east of this tile can be chosen in w/nNS or
w/nEW ways, respectively. So the total number of possi-
ble L-shaped trimers is w3/�nNSnEW). Looking now at an
individual tile, A, the number of L-shaped trimers that can
be created by starting out from tile A is determined by

†Note that the tiles are still physically rotatable, but by the way we
organize the bond-pairs the tiles will be forced to line up with the rest
of the assembly so that every copy of a tile will always have the same
rotation.

‡The choice of direction of the trimer construction is arbitrary and the
results will be the same if one considers L-shaped trimers with different
rotations.

(a) (b)

, , ...

w/nNS

w/nEW w2/nNSnEW

Fig. 4. (a) Each open north-, or east-bond can bind to w/nNS or w/nEW

tile types on average. This creates on average, for each starting tile,
w2/�nNSnEW 	 possible corners like the one marked by an arrow in (b).
Each of these corner sites must uniquely define the tile type that should
bind to the site. If the number of created corners is greater than w for
some tile then one tile type must fit two of the created corner sites. This
violates the principle of programmable self-assembly and would yield a
non-deterministic assembly process.

the bond uniqueness of the bonds of tile A. One thing is
certain however, tile A must not be able to create more cor-
ner sites than there are tile types. If this would be the case
then at least one of the tile types would have to fit more
than one of the created corner sites. This would in turn vio-
late the principle of programmable self-assembly that each
incoming tile is uniquely determined by binding to at least
two bonds. Thus we conclude that the number of corner
sites each individual tile may create must be less than or
equal to w. The average number of L-shaped trimers each
tile may create is w3

nNSnEW
/w, so w2/�nNSnEW	≤w following

the above arguments. However, if one tile generates less
than w corner sites, then another tile must generate more
than w corner sites in order for the total number of corner
sites to be correct. As mentioned, this is not allowed and
the only possibility left is thus

w2

nNSnEW

= w ⇒ w = nNSnEW (9)

The only exception to this is when bu = 1, i.e., when the
assembly is of the crystal type and not of the PSA type,
then each tile can generate exactly one corner site and
nNS = nEW = w.

The Eqs. (8) and (9) constitute an equation system with
the following solution:

nNS�EW = bu±
√
b2
u−w (10)

where nNS, nEW, and w must be positive integers. Since
all the numbers in (10) are real, we get the following con-
straint on the values of the bond uniqueness

b2
u ≥ w (11)

4.1. Designing Tiles from Corners

Following the results above we can give a general method
for designing square, non-rotating, tile systems having a
certain number of tile types and bond uniqueness. The
method can be extended to non-rotating tile types of other
geometries.

A corner is defined as a pair of two adjacent bonds on
a tile. Square tiles will have four corners, i.e., four pairs of

J. Comput. Theor. Nanosci. 3, 1–7, 2006 5
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(N,W) nNS

nNS
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Fig. 5. (a) The corners of a square tile. (b) The number of choices for
the types of bonds is nNS for the north and south bonds and nEW for
the east and west bonds. Since each pair of bonds at a corner must be
unique, w ≤ nNSnEW.
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(b,1′)
(b,2′)

(1′,a′)
(1′,b′)
(2′,a′)
(2′,b′)

(a′,1)
(a′,2)
(b′,1)
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(1,a)
(1,b)
(2,a)
(2,b)
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1′

2

a a′

2′

nNS = nEW = 2

bu = 2

w = 4

1

b a′
1′

2

b b′
2′

Fig. 6. Example showing the construction of a tile-system with nNS =
nEW = 2. Primed bonds fit the unprimed counterpart. a,b are west bonds,
a′,b′ east bonds, and 1,2 and 1′,2′ north and south bonds, respectively.
(a) A table showing the total number of possible WS, SE, EN, and NW
bond-pairs. (b) Four corner bond-pairs makes one tile. (c) Proceeding in
the same manner as in (b) generates a complete tile-system with w = 4
and bu = 2. (This is the same system as in Fig. 1(c)).

bonds: (W, S), (S, E), (E, N), and (N, W),¶ see Figure 5(a).
Hexagonal tiles will have six corners and cubes in three-
dimensional assembly will have eight corners where each
corner will be a bond triplet.

When the number of bondtypes, nNS and nEW, have been
decided, one may construct nNSnEW corner pairs for each
type of corner (WS, SE, EN, and NW), in total 4nNSnEW

pairs. To construct the tiles, simply pair the corners four and
four, see Figure 6 for an example. Because Eq. (9) holds,
all corner pairs must be used, and each corner pair must
only be used once. If one corner pair were to occur on
two tiles, the corresponding corner site would not uniquely
define a single tile and the assembly would be random.

4.2. Example

The proposed method for tile design should be proceeded
with a check for the technology limits in order to see that
the desired requirements can be met. The following is an
example of such a check:

Suppose we have a technology to produce 10 nm ×
10 nm square tiles using a maximum of 14 bond pairs
(suppose for example that we only have 28 DNA-strands
to work with). So nNS +nEW = 14. Is it possible to cover
a surface of 1 �m×1 �m and get uniquely addressable
structures that are maximum 4 tiles big (� = 4, S = 2500,
N = 10000)? By combining Eqs. (8) and (9) we find that

¶The notation assumes a counter-clockwise walk around a tile, this is
why we use WS and EN instead of SW and NE.

bu = 1
2 �nNS+nEW	, so bu ≤ 7. Since w= nNSnEW we know

that the maximum number of tile types is w = 49. Using
Eq. (7) with D = 2 we get that the maximum number of
unique structures that we can expect is S = 1796 so the
answer is no, we would need more bond types.

5. DISCUSSION

Depending on the application, structures that show rep-
etitions if rotated may, or may not, count as unique. If
we do not regard structures, that show repetitions while
rotated, as unique, then we must divide the total number of
unique structures by the rotational symmetry of the lattice.
In the case of square tiles the factor is four. If one con-
siders the case of constructing nanosystems using assem-
bly of nanodevices the orientation of the nanodevices will
often be important and we should thus take this factor into
consideration.

Another important issue that will affect the assembled
structure is the relative concentrations of the tile-types. In
Eq. (7) we assume that the relative concentrations are all
equal 1/w. Any deviation from this will lead to a reduced
number of unique structures.

Looking now at the error rate in self-assembly, how is it
related to the bond uniqueness? At thermal equilibrium the
probability of forming a certain configuration L is given
by:31

�L =
exp�−UL/kBT 	∑
Li

exp�−UL/kBT 	
(12)

where UL is the energy of the formation, T is the tem-
perature, and kB is Boltzmanns constant. Assuming that
the energy of all bonds are equally strong and the binding
energy is equal to U . Assuming that the correct binding
of a tile will have binding energy 2U (two bonds fit) and
any incorrectly bonded tile (only one bond fit) will have
energy U . For each open bond in an assembly there are
bu tiles that may bind to that bond but only one of these
tiles is the correct one. Consequently, for a corner site with
two open bonds there are 2�bu− 1	 possible ways to add
an incorrect tile type by making a single bond. Follow-
ing this discussion, we get that the probability of a correct
assembly event is given by:

�L = exp�−2U/kBT 	

exp�−2U/kBT 	+2�bu−1	 exp�−U/kBT 	

� 1−2�bu−1	 exp�U/kBT 	 (13)

The complimentary probability is the probability of errors
and as shown in Eq. (13) it is proportional to bu. If one
is concerned about the correctness of the assembled struc-
tures it is thus advisable to choose a low value for the
bond uniqueness.

Since we have found that, for square tile systems that
are made non-rotating, bu ≥ w, we can also conclude
that the error rate is at best proportional to

√
w. Making

complex assemblies with spatially small unique structures
(low �, high w) might therefore be harder than previously
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assumed. Proposed methods for error correction exists32

but since they rely on subdivision of the tiles, in effect
creating even more tiles per unique structure, one needs to
take this into consideration when evaluating the size of the
unique structures. The results in this paper are still valid,
the extra tiles needed for error correction is simply a mul-
tiplication factor of the number of tile types needed and
of the resulting number of tiles per unique structure.

6. CONCLUSIONS

We have presented a method for the parametrization of
assembly systems derived from their ability to form unique
structures. We have also introduced the concept of bond
uniqueness and showed how it influences the number of
unique structures that a programmable self-assembly sys-
tem can create. The structural complexity is heavily depen-
dent on the bond uniqueness of the system. By using the
relations obtained in this paper (mainly Eq. (7)) for nano-
technology applications it will possible to vary the param-
eters w (number of types of building blocks) and bu (their
bond uniqueness) to obtain the desired structural com-
plexity and the desired size (�) of the addressable loca-
tions/unique structures. In Section 4 we showed how these
parameters influences the number of bond types required,
and the design of the actual building blocks to be used for
the assembly. The introduced concepts will prove helpful
when designing tile systems and evaluating the theoreti-
cal limits of a proposed self-assembly technology at an
early stage.
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