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Rigidly organized molecular patterns are typically either foreign 
or intracellular in most mammals and the immune system 
has thus evolved an efficient response to such structures1. In 

fact, the concept of particulate antigen display has been success-
fully exploited for vaccine development2,3 (Supplementary Note 1). 
Exactly how such patterns elicit a strong response is, however, still 
not fully understood. A recent study using high-speed atomic force 
microscopy suggested that antibodies, and thus also, by extension, 
B-cell receptors (BCRs), are able to ‘walk’ on a pattern of antigens 
by attachment and release of its Fab arms4. This concept, combined 
with a clustering model of BCR activation5, could provide more 
clues as to why B-cell activation is strong for rigid and highly orga-
nized patterns of antigens. Whatever the case may be, a picture  
is nevertheless emerging in which it is becoming clear that a deeper 
knowledge of the dynamics of antibody binding to variably distrib-
uted antigens would be highly desirable for a more complete under-
standing of the initiation of immune responses and for rational 
vaccine design.

Multivalent binding interaction between antibodies and antigens 
is also regarded as one of the dominant modes to initiate antibody 
effector functions (Supplementary Note 1), such as complement 
activation6, antibody-dependent cell-mediated cytotoxicity7, opso-
nophagocytosis and antibody-mediated antigen presentation8,9. 
Thus, the geometric organization of antigens not only plays an 
important role in influencing initiation but also on the induced 
antibody isotype and subclass effector functions.

Antibodies consist of two identical antigen binding fragment 
arms (Fab) and a constant fragment crystallizable region (Fc) 
(Fig. 1a and Supplementary Fig. 1) in a homodimeric molecule 
connected via disulfide bridges10. Humans have five antibody iso-
types (IgM, IgD, IgG, IgE and IgA) and IgG, the most abundant in 
plasma, can further be divided into four subclasses (IgG1, IgG2, 
IgG3 and IgG4). Sequence differences between the antibody iso-
types (Supplementary Figs. 1 and 2) result in several differences, 
for example, the number of domains of their heavy chains and  
the makeup of the flexible hinge region located between the two 

Fabs and the Fc region. The human IgG subclasses have minor  
differences in amino acid composition in the Fc region, but have 
substantial differences in amino acid sequence and length of their 
hinge regions. These differences result in very distinct functional 
properties and engagement of Fc receptors and the complement sys-
tem11. Crystal structures of full-length IgG are few10 (Supplementary 
Fig. 1) due to their flexibility6,12, but have revealed strikingly  
asymmetric conformations somewhere between a T and a Y shape. 
Electron microscopy has been used to estimate that IgG should be 
capable of bivalently binding antigens separated by 6–14 nm for the 
mouse13 or human14, whereas fluorescence energy transfer studies 
suggest a slightly wider bivalent binding distance15.

Despite all the clues to its importance, the answer to the question 
of how structural flexibility affects the ability of antibodies to bind 
their cognate antigens at different distances and densities remains 
largely unknown. In particular, no methods have been able to show 
precisely the optimal antigen separation required for the most stable 
bivalent bindings.

Design and characterization of PSPR
To characterize the dynamic interplay between the antibody struc-
tural flexibility and binding to cognate antigen patterns in real time, 
we applied DNA nanotechnology16 using DNA origami17–19, which 
is used to arrange proteins or chemicals such as fluorophores, with 
nanometre20–23 or subnanometre precision24, including demonstra-
tions of bivalent binding25. The method was established by the conju-
gation of hapten (a small-molecule antigen) patterns to well-defined 
DNA origami nanostructures (Fig. 1b–d) that were immobilized 
on a surface plasmon resonance (SPR) chip using oligonucleotide 
hybridization (Fig. 1e,f). We designed two DNA origami nano-
structures, an 18-helix bundle (18HB) and a brick used for pairwise  
distance measurements or multiantigen 2D patterns, respectively 
(Fig. 1d, Supplementary Figs. 3–5 and Supplementary Table 1)  
patterned with either digoxigenin (DIG), 4-hydroxy-3-iodo-5- 
nitrophenylacetate (NIP) or 4-hydroxy-3-nitrophenyl (NP) antigens.  
The repertoire of human anti-NIP antibodies with equivalent Fab 
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affinities established previously (Methods) constitutes an opportu-
nity to study and compare medically relevant classes of antibodies 
and was used for the main experiments as far as possible with NP 
or NIP as the antigens. To establish the method, and in particular 
when strong monovalent binding affinity was needed, as in the case 
of complex binding patters, we resorted to the use of commercially 
available high-affinity rabbit anti-DIG IgG. Serial dilutions of anti-
hapten antibodies were injected over stably immobilized DNA 
nanostructures and the obtained sensorgrams (single-cycle kinet-
ics) (Fig. 1g) were fitted to a 1:1 Langmuir binding model to derive 
the binding constants (Supplementary Figs. 6 and 7). We refer to the 
method as patterned SPR (PSPR).

To validate the robustness of the PSPR method, we took advan-
tage of monoclonal rabbit anti-DIG IgG antibodies (alignment data 
in Supplementary Figs. 8 and 9) and measured binding to origami 
patterns with DIG. The structures that displayed widely spaced 
antigens induced by monovalent binding resulted in binding affini-
ties in the apparent dissociation constant (Kd) of 25–35 pM, where 
the binding occupancy scaled well with the number of antigens 
per structure (Supplementary Fig. 10; the binding kinetics data are 
given in Supplementary Table 2). ANOVA analysis showed that the 
location of the antigens on the monovalent nanostructure did not 
affect the binding interaction significantly (Supplementary Table 3). 
Nanostructures with two closely spaced hapten molecules showed 
a significant increase in binding affinity (~tenfold decrease in Kd), 
with a binding occupancy of one antibody per structure, consistent 
with the formation of bivalent binding. Nanostructures with three 
antigens gained binding affinities between monovalent and biva-
lent binding, in which the binding occupancy resulted in roughly 
two antibodies per structure, indicating a mixture of monovalent 
and bivalent binding. Furthermore, we introduced some extra 
mobility to the antigens by increasing the linker length from 2 to 
21 nucleotides, which resulted in similar antibody binding patterns 

(Supplementary Fig. 11). Removing the 2-nucleotide linker gave 
no significant difference in the antibody’s binding affinity towards 
the 3.4 nm sample, which suggests that the uncertainty of distances 
between two antigens is smaller than the linker’s contour length, 
probably due to the entropic spring-like behaviour of both the link-
ers and the overall structural flexibility (Supplementary Fig. 12 and 
Methods). Small molecules displayed on origami constitute state-of-
the-art molecular positioning, so, although distances can vary from 
fluctuations in individual structures, the ensemble average nature of 
our measurements over a large number of entropic springs ensures 
robust comparisons over nanometre distances, similar to previous 
studies using origami distance measurements24,25. As the density 
of individual nanostructures on the SPR chip may influence the 
binding kinetics by allowing a single antibody to bridge two such 
neighbouring structures, we verified that the seeding density in our 
case did not influence the binding affinity for the concentrations of  
the structures used (Supplementary Fig. 13). Quantitative incor-
poration of hapten-modified staples to the nanostructures is also  
key to the PSPR method. Using gel retardation assays, we demon-
strated that an undetectable amount of our nanostructures have 
defects in hapten oligonucleotide incorporation (Supplementary 
Figs. 4 and 14).

Exploring the structural flexibility of human IgG subclasses
Next, we aimed to explore the conformational flexibility of the 
four human IgG subclasses by the use of mouse–human chimeric 
versions that harbour specificity for the hapten NIP (Methods). 
Binding was studied using the 18HB on which two NIP molecules 
were arranged at distances from 3 to 44 nm (Supplementary Fig. 5) 
and a monovalently decorated structure (denoted ‘0 nm’) (Fig. 2 and 
Supplementary Table 4). We observed bivalent binding as a signifi-
cant decrease (> 1,500-fold) in the Kd for optimal distances com-
pared to the monovalent samples. Interestingly, instead of a sharp 
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Fig. 1 | The PSPR method. a, Three-dimensional (3D) rendering of human IgG1 based on X-ray crystallography data (Protein Data Bank PDB:1HZH)10.  
b, The advantage of PSPR: in contrast to conventional SPR (left), which randomly arranges its ligands on the surface, the PSPR method (right) utilizes DNA 
origami to prepattern the antigen of interest (yellow dots) prior to immobilization. c, Antigen nanopatterns were fabricated using different combinations 
of antigen-decorated staple oligonucleotides (differently coloured lines). d, 3D models using cylinders as a representation of double helices (left) and 
transmission electron microscopy negative-stain micrographs (right) of the DNA nanostructures used in this study. Scale bars, 40 nm. Two types of DNA 
nanostructures, an 18-helix rod and a 44-helix brick, were used to pattern the antigens. e, The antigen nanopatterns were immobilized onto a streptavidin-
biotinylated oligonucleotide surface via oligonucleotide hybridization to sequences that protrude from the bottom of the origami. f,g, These were first 
allowed to immobilize in the SPR machine (f), followed by an injection of increasing antibody concentrations and finally a dissociation phase (g). The 
kinetic data can be obtained by fitting the binding curves with a 1:1 binding model (Supplementary Fig. 7). The model shows the origami and antibody 
rendered to scale, and illustrates a 16 nm bivalent binding and a monovalent binding.
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cut-off between monovalent and bivalent binding, a U-shaped 
behaviour in the dissociation constant, which corresponded to a 
sharp peak in association, was seen when the binding affinity was 
plotted against antigen distance (Fig. 2 and Supplementary Figs. 15, 
16). Binding became weaker when two antigens were arranged at 
short (3 nm) or long (17 nm) separations, and the binding affinity 
reached a striking maximum at 16 nm for all the antibodies stud-
ied. Monovalent binding clearly resumed at 29 nm. Importantly, 
the results revealed differences between the IgG subclasses, where 
IgG1 and IgG4 showed a similar behaviour, but IgG2, which is the 
most rigid subclass, showed a ‘stepwise’ behaviour, in which the 
binding affinity was similar at short distances but became signifi-
cantly stronger at around 14–16 nm. In contrast, IgG3, which is the 
most flexible subclass, showed strong binding at shorter distances 
and even more so at 14–16 nm. Surprisingly, although the strongest 
binding was seen at 16 nm, there was a sharp drop in affinity when 

going to 17 nm (~tenfold increase in Kd), which indicates that this 
distance range of around 16 nm is both optimal and at the same time 
close to the limiting distance for bivalent binding in the four human 
IgG subclasses. An illustration of IgG1 stretched to a 16 nm bivalent 
binding is shown in Fig. 1g.

To further explore the antigen binding properties of IgG3, and in 
particular the influence of its long hinge of 62 amino acids, we stud-
ied three hinge-engineered variants; one variant harboured only 
the C-terminal part of the hinge, which consisted of 15 amino acids 
(m15), one in which the hinge was replaced with a short stretch of 
five amino acids (Ala-Ala-Ala-Cys-Ala), which included a cyste-
ine that made a disulfide bridge between the heavy chains (HM4), 
and one that lacked the hinge region altogether, such that the heavy 
chains were held together solely by non-covalent interactions in the 
CH3 domains and the CH2 domains are linked by a disulfide bridge 
at the C-terminal end of the light chains (HM5) (Supplementary 
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Fig. 17). The results revealed that the HM4 mutant exhibited an 
IgG2-like behaviour, with a strong preference for bivalent binding 
to antigens spaced in the 14–16 nm range, whereas the m15 mutant 
showed a binding behaviour similar to that of IgG1 and IgG4. This 
result is in line with what one would expect, given the length of the 
upper hinge and thus the flexibility of these mutants. Interestingly, 
IgG3 and both the HM4 and HM5 mutants showed a peculiar 
behaviour with a local minimum in Kd around 3 nm. Importantly, 
we studied the binding behaviour of an engineered monomeric IgM 
variant (C575S), which, unlike its natural counterpart, does not 
form hexamers and/or pentamers. IgM does not contain a hinge 
region, but instead has an additional domain (Supplementary Fig. 1).  
Despite lacking a hinge region, we observed strong bivalent bind-
ing for antigen separations in the range 3–17 nm (Fig. 2b and 
Supplementary Fig. 18), and the relatively low Kd at 29 nm (which 
shows similar affinities as the IgGs displayed for 17 nm) indicates 
that, to some extent, monomeric IgM is either able to stretch, per-
haps by partial unfolding of the domains for bivalent binding well 
beyond 17 nm, or is able to multimerize to reach long distances 
effectively (which would be consistent with the higher binding ratio 
seen in Fig. 2b). This remarkable ability of monomeric IgM to bind 
bivalently to antigens spaced over a wide range of distances, or spa-
tial tolerance, may well be crucial for its special role in the first line 
of defence against pathogens as the IgM BCR is monomeric on the 
surface of B cells.

Next, we explored the relationship between the binding affin-
ity of the individual Fab and conformational flexibility of the anti-
NIP antibodies using the hapten NP as the antigen instead of NIP, 
which gave a 60-fold weaker Kd than that measured towards NIP 
conjugated nanostructures. We observed that the antibodies failed 
to crosslink two NP antigens by bivalent binding at all distances 
tested, except the 16 nm distance, for both IgG1 and IgG3 (Fig. 3). 
Thus, lower affinity antibodies clearly have a lower spatial toler-
ance than the stronger binders. Note that the antibodies were iden-
tical (two different antigens were used) and flexibility arguments  
cannot explain the data, but instead suggest that the lower binding 
energy of the individual Fab arms are not strong enough to induce 
stretching or contraction of the arms, as may well be the case when 
binding to NIP.

Deconstruction of multiple antibody–antigen interactions
To deconstruct the complex interactions between multiple antibod-
ies and antigens, we designed PSPR experiments with nanoscale 
patterns of DIG monomers, dimers, trimers, tetramers, pentamers 
and hexamers (brick structures, H1–H6 hexagon with 15 nm edges 
(Fig. 4a and Supplementary Fig. 5)) with the aim to construct and 
empirically calibrate a model of multivalent binding dynamics. We 
measured both the apparent affinity and average binding ratio (cor-
responding to average antibodies per structure) using rabbit IgG 
(Fig. 4a and data in Supplementary Table 5). Notably, although the 
tetramers and hexamers were engineered to enable a saturated state 
of bivalently bound antibodies, we observed greater binding ratios 
than would be expected if this was the case. In contrast to single 
molecule methods, which have been employed to construct mod-
els of molecular dynamics according to individual trajectories26, 
we implemented a mathematical model that dissects the ensemble 
PSPR signal (four-parameter continuous-time Markov chain) and 
was able to accurately reproduce the binding curves from a bottom-
up quantification of the contributions of internal molecular states 
(Fig. 4a–c). This dynamic model (detailed in Supplementary Note 
2 and Supplementary Figs. 19–31) assumes that the local states 
are unoccupied, monovalently occupied and bivalently occupied, 
and a network of transitions between those states mediated is by 
the elementary processes of monovalent attachment, monovalent 
detachment, monovalent-to-bivalent conversion and bivalent-to-
monovalent conversion. We sought a consensus set of the four rate 

parameters with which our model was able to produce satisfac-
tory fits for all the partial configurations of the hexamer antigen 
patterns (Supplementary Fig. 23). Compared to previous bivalent 
binding models27 that strive to accurately reproduce the dynamics of  
multivalent binding, our model can be used to predict the dynamics 
of binding to hypothetical antigen patterns of arbitrary geometry 
and provides data on internal conversion rates (Fig. 4c–e) and con-
stituent microstates (Fig. 4b–e).

Hexameric antigens are of particular interest as self-assembled 
Fc–Fc-formed antibody hexamers that are monovalently bound to 
their antigens have been demonstrated to activate the complement 
system with a high efficiency6. Our results show that the dominant 
interaction between an antibody and antigen hexamer patterns 
with 15 nm separations is the engagement of the bivalent binding 
of three antibodies, and the probability of having six monovalently 
bound antibodies is close to zero even at a 0.5 nM antibody con-
centration (530 ppm among all the possible microstates). However, 
the model of binding dynamics indicates that at the steady state, 
antibodies in every system assume a diverse distribution of states, 
dominated by bivalent saturation configurations (for example, three 
bivalently bound antibodies in the hexameric configuration). The 
probability space is shared with other complexes, including mix-
tures of monovalent and bivalently bound antibodies, which drives 
the average occupancy to be greater than that one would expect  
for bivalent saturation. This, in turn, explains the higher observed 
values for the binding ratio of antigen hexamer patterns (Fig. 4c,d 
and Supplementary Fig. 26i). Further, modelling can accurately pre-
dict that, although about half of the hexamers are occupied by three 
antibodies at a high concentration (Fig. 4c,d) and settling fast at 
high concentrations (Fig. 4d), a majority of the structures bear other 
patterns of bound antibodies (Fig. 4c,d). A similar close examina-
tion of other antibody binding patterns also reveals a plethora of 
binding states in which the most close-packed bivalent configura-
tions do not, in fact, constitute a majority of the states even at higher 
antibody concentrations (Supplementary Figs. 25–31).

Conclusions
Here we reveal, using the PSPR method to measure antibody inter-
actions with precise nanoscale patterns of antigens, that the reach 
necessary for bivalent antigen binding for human IgG subclasses 
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ranges from approximately 3 to 17 nm, with a strong peak in bind-
ing affinity at 16 nm. In addition, we show that the antibody affinity 
has a large effect on the spatial tolerance for bivalent binding, in 

effect limiting bivalent binding to the 16 nm range for low-affinity 
antibodies. This relationship should be generalizable to the extent 
that if other factors, such as configurational degrees of freedom, are 
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held constant, then we expect a reduction in the constituent epitope 
affinities to reduce the functional affinity or avidity as well. Spatial 
tolerance thus represents a capacity to endure affinity-weakening 
strain on binding sites28, in addition to a reduction of that strain 
in the first place, for example, via flexibility. We further find that 
differences in the antibody constant region appear to greatly influ-
ence the binding strength to nanopatterns. IgG3 and, in particu-
lar, monomeric IgM (present on naive B cells as the BCR antigen 
receptor), have a much higher propensity for binding closely sepa-
rated antigen pairs. This is in contrast to previous work on synthetic 
model systems that suggested a very modest effect of linker length 
and flexibility on bivalent binding strength29. In fact, our data are in 
line with recent studies indicating that the interaction of antibody 
with cognate antigen may be affected by the constant region30 and 
that structural differences are sufficient to cause differences in bind-
ing between isotypes of BCRs31.

Monomeric IgM BCR, anchored to the membrane of naive B 
cells in addition to IgD, is typically the first to encounter a pathogen. 
The exceptional spatial tolerance for bivalent binding of human IgM 
uncovered in our data (3–29 nm (Fig. 2b)) highlights an important 
feature of the structure of IgM. It suggests a unique ability to engage 
and dynamically interact with antigen patterns of a wide range of 
nanoscale densities, as displayed by pathogens. As B-cell responses 
mature in germinal centre reactions, less spatially tolerant isotypes, 
such as IgG, predominate. In addition to providing distinct effector 
functions to the antibodies, our data lead us to hypothesize that the 
IgG isotype switch is forcing the evolution of antibodies that bind 
well, despite having a lower spatial tolerance.

Further, by combining PSPR with a binding dynamics model, 
we dissected and characterized the distribution of antibody/anti-
gen complexes, and thereby provide a new basis for the biophysical 
interrogation of these important interactions. From our study of the 
hexameric antigen patterns in particular, we hypothesize that the 
formation of hexameric IgG, which has been shown to be important 
for complement activation6, might actually be promoted when an 
antibody has a low spatial tolerance but are present at a high con-
centration, as opposed to an antibody with a higher spatial tolerance 
more likely to form bivalent attachments. The immune response 
progression from IgM to lower spatially tolerant antibodies, such as 
IgG, is consistent with such a hypothesis.

Note that the confidence and richness of the state stratification 
obtained from the model is due to the extensive calibration through 
multiple antigen patterns. Reducing this information demand 
should be prioritized in future work, for example, by utilizing more 
information-rich experimental data such as interferometric scat-
tering microscopy32. An expanded model (Supplementary Note 
3), with the incorporation of experimentally determined binding 
rates as a function of antigen separation distance, can predict the 
most prevalent binding mode to arbitrary antigen patterns. Such 
an analysis can provide mechanistic insights into how monoclonal 
antibodies engage antigens displayed on pathogens. Given a priori 
knowledge about the antigen pattern on the target, the antibody type 
involved and the strength of the antibody–antigen interaction, one 
could predict how the antibody will engage the target, which paves 
the way for more systematic studies of how antibodies with tailored 
antigen binding properties are able to perform effector functions to 
eliminate infectious agents and cancer cells.
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summaries, source data, statements of data availability and asso-
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Methods
Preparation of the p7560 and p8634 scaffold for origami. A single colony of 
Escherichia coli JM109 was picked and transferred to 25 ml lysogeny broth and 
cultured overnight at 37 °C in a shaking incubator. The culture (3 ml) was diluted 
into 250 ml of 2xYT and cultured in the same shaking incubator. The phages 
(p7560 or p8634)17 were added to the bacteria culture when its optical density 
reached 0.5 at a multiplicity of infection of 1, and the whole culture was incubated 
for an additional 5 h. The culture was transferred into a 250 ml centrifuge bottle 
and centrifuged twice at 4,000 relative centrifugal force (rcf) for 25 min at 4 °C, 
transferring into a fresh centrifuge bottle in between. PEG 8,000 (10 g) and NaCl 
(7.5 g) were added to the supernatant and incubated in an ice water bath for 30 min. 
The supernatant was then centrifuged at 10,000 rcf for 30 min at 4 °C, and in this 
step the phages were pelleted. The phage pellet was then resuspended in 10 ml of 
Tris buffer (pH 8.5), 10 ml of 0.2 M NaOH with 1% SDS was added, mixed gently 
by inversion and incubated for 3 min at room temperature. Afterwards, 7.5 ml of 
3 M KOAc (pH 5.5) was added and the mixture was mixed gently by swirling, and 
incubated on ice for 10 min. The mixture was centrifuged at 16,500 rcf for 30 min 
at 4 °C, and the supernatant, which contained the M13 ssDNA, was added to 50 ml 
of 99.5% EtOH, mixed gently and incubated in an ice water bath for 30 min before 
centrifuging at 16,500 rcf for 30 min at 4 °C. The DNA pellet was washed with 
75% EtOH, and centrifuged again at 16,500 rcf for 10 min at 4 °C. The pellet was 
dried at room temperature for a minimum of 15 min, and resuspended in 10 mM 
Tris (pH 8.5). The concentration of the ssDNA was measured with NanoDrop, and 
the quality and purity were characterized by agarose gel electrophoresis (1.5 % w/v 
agarose gel with 0.5 mg ml–1 ethidium bromide in 0.5× Tris/borate/EDTA as the 
running buffer).

Staple oligonucleotide preparation. Oligonucleotides were purchased from  
IDT in 96-well plates on a 25 nmol synthesis scale. The staples in each well were 
ordered to be diluted in water to a final concentration of 100 μ M. The final 
concentration of the staples after pooling was adjusted to 400 nM each. NIP-,  
NP- and biotin-modified oligonucleotides were purchased from IDT.

Preparation of antigen-decorated nanostructures. Structures were designed 
using caDNAno33. The 18HB had been characterized previously34–36. The standard 
folding conditions used in this study were 20 nM ssDNA scaffold, 100 nM each 
staple oligonucleotide, 13 mM MgCl2, 5 mM Tris pH 8.5, and 1 mM EDTA. Folding 
was carried out by rapid heat denaturation followed by slow cooling from 80 to 
60 °C over 20 min, and then from 60 to 24 °C over 14 h. Removal of excess staples 
was done by washing (repetitive concentration/dilution) the 18HB with PBS pH 
7.4 supplemented with 10 mM MgCl2 in 100 kDa molecular weight cut-off 0.5 ml 
Amicon centrifugal filters (Merck Millipore).

Uncertainty estimation of distances. All double-site distances (that is, all except 
the ‘0’ nm) have variations that come from the linker length of two nucleotides, 
and from variations of the structures as a whole. The structural variations of the 
18HB used for these experiments were thoroughly characterized in previous 
work36. From these earlier measurements, we found that the structures can vary  
in length due to bending and other variations with a s.d. of 3% of the total length. 
The linkers additionally constitute entropic springs centred around the mean 
distances with a maximum extension at each site of approximately 2 nm, and 
thus x ±  4 nm for a two-site distance, where x is the mean antigen separation. 
The variance of a uniform distribution with a 4 nm spread is 42/12 nm2 and the 
standard deviations used for the plots are calculated as the square root of the sum 
of these variances: σ(x) nm =  √ (42/12 +  (0.03x)2).

Preparation of streptavidin CM3 sensor chip for SPR. A BIAcore t200 (GE 
Healthcare) was used to measure the binding kinetics of the antibody–antigen 
pairs. Streptavidin (Sigma-Aldrich) was dissolved in 100 mM sodium acetate 
buffer, pH 4.5, and immobilized on a CM3 chip (GE Healthcare) according to the 
manufacturer’s instructions. The biotinylated anchor oligonucleotide was adjusted 
to 200 nM in HBS-EPs running buffer, and passed through the SPR surface for 
20 min, followed by a 5 min 50 mM NaOH washing.

SPR kinetic experiments. Streptavidin (10 µ g ml–1 in 10 mM NaOAc, pH 4.5)  
was immobilized to a CM3 sensor chip (GE Healthcare) via NHS EDC  
(N-hydroxysuccinimide/1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) 
coupling; the running buffer used here was 1× HBS-EP (GE Healthcare). 
Biotinylated anchor oligonucleotides (200 nM diluted in 1× HBS-EP running 
buffer) was injected over the surface for 20 min, followed by in short 5 min 
injection of 50 mM NaOH to wash away non-specifically bound oligonucleotides. 
The DNA nanostructures carrying the antigen patterns (prepared in 1× PBS 
supplemented with 10 mM MgCl2) were injected over the streptavidin – biotin 
anchor oligonucleotide surface for 20 min, followed by a 10 min buffer wash. 
Antibodies were diluted to various concentration ranges, depending on its affinity 
towards its antigen (0.025–0.5 nM for anti-DIG antibodies and 1–50 nM for 
antibiotin antibodies, 0.0256–1 nM for anti-NIP antibodies). A single cycle kinetics 
injection was used to inject the increasing concentrations of the antibodies, 
with each concentration having a 3 to 5 min contact time and 30 µ l min–1 flow 

rate to avoid mass-transfer limitations, and after the highest concentration, the 
dissociation curved was recorded for 15 min. All antibody kinetics experiments 
with DNA origami patterns were carried out with 1× HBS-EP running buffer 
supplemented with 10 mM MgCl2. The t200 evaluation software was used to fit 
the data to a 1:1 Langmuir binding model and calculate the Ka, Kd and binding 
capacity. The surface was regenerated with a 5 min injection of 50 mM NaOH.

Transmission electron microscopy. Purified DNA nanostructures (5 μ l, 10 nM) 
were spotted on glow-discharged, carbon-coated Formvar grids (Electron 
Microscopy Sciences) and incubated for 20 s before blotting with filter paper; the 
grid was immediately stained with 2% w/v uranyl formate solution for 20 s and 
finally blotting of the solution. The grids were then imaged with an FEI Morgagni 
268(D) transmission electron microscope.

Gel electrophoresis. The DNA origami nanostructures were loaded (64 pmol) in 
2% agarose gels that contained 0.5 mg ml–1 ethidium bromide, and the gel was run 
at 70 V for 3.5 h in an ice water bath. The gels were imaged with ImageQuant LAS 
4000 (GE Healthcare).

Computational model. Detailed mathematical steps are described in the 
Supplementary Information. The model is a continuous-time Markov chain based 
on a chemical reaction network37,38 constructed from decomposing the antibody 
binding on an arbitrary 2D antigen pattern into four elementary processes 
(monovalent binding, monovalent unbinding, monovalent-to-bivalent conversion 
and bivalent-to-monovalent conversion). A breadth-first search algorithm39,40 was 
then executed for a given antigen pattern to discover the set of states (that is, every 
combination of empty antigens, monovalently occupied antigens and bivalently 
occupied antigens possible for a given pattern) and the transitions (each mediated 
by one of the four processes above) between those states. SPR kinetic profiles were 
generated by computing the structure’s probability to occupy a given state at each 
point in time beginning from an initial condition on the basis of rates (four in  
total, each corresponding to one of the elementary processes or parameters to  
be fit to the experiment) to determine the flux of state probabilities that occurs 
from one time step to the next41,42. Each state has a corresponding occupancy, 
or number of bound antibodies, associated with it that are weighted by the 
probability of the state to then obtain the average occupancy per structure. 
Experimental profiles were normalized to the number of structures, which allowed 
us to fit simulated binding curves to experimental curves and estimate values 
of the four rate parameters through minimization of the sum of squared errors. 
All the computations were implemented with a custom code written in Python 
(Supplementary Information).

Materials. All BIAcore products were purchased from GE Healthcare. All 
antibodies used in this study are monoclonal. Rabbit anti-DIG IgG (no. 9H27L19) 
was purchased from Thermo Scientific; mouse anti-DIG IgG1 (no. ab420) was 
purchased from Abcam; mouse antibiotin IgG1 (no. ab201341 and no. ab46862) 
were purchased from Abcam. Reagents for buffers and solutions (PBS, NaOH and 
MgCl2) were purchased from Sigma-Aldrich.

Production and purification of anti-NIP antibodies. Vectors that encode 
the constant heavy chains of human IgG1, IgG2, IgG3, IgG3 and IgG3-hinge 
engineered variants and monomeric IgM (C575S) with specificity for NIP as well as 
a vector that encodes the mouse λ  light chain with NIP specificity were described 
previously43–47. The antibodies were produced in HEK293E cells (ATCC, CRL-
1573) by transient co-transfection of the heavy- and light-chain encoding vectors 
using Lipofectamine 2000 (Invitrogen) following the manufacturer’s instructions or 
by stably transfected J558L cell lines. The antibodies were purified from collected 
supernatants and purified using a column coupled with NP or a CaptureSelect 
pre-packed anti-hIgG-CH1 column (Life Technologies) as described by the 
manufacturer. The collected proteins were up-concentrated and buffer changed 
to PBS (Sigma-Aldrich) using Amicon Ultra-15 ml 50 K columns (Millipore) 
prior to size exclusion chromatography using a Superdex 200 increase 10/300 GL 
column (GE Healthcare) coupled to an ÄKTA FPLC instrument (GE Healthcare). 
The monomeric fractions were up-concentrated by Amicon Ultra-0.5 ml 100K 
columns (Millipore). The HEK293E cell line and J558L murine myeloma cell lines 
were maintained in RPMI (Sigma-Aldrich,) and supplemented with 10% heat-
inactivated FCS 25 µ g ml–1 streptomycin and 25 U ml–1 penicillin.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
All the code used for the computational results is available upon request.

Data availability
The raw data that support the plots within this paper and other findings of this 
study are provided in Supplementary Information and are available from the 
authors upon reasonable request.
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